Методики моделирования нестационарного процесса тангенциального точения

Страницы работы

19 страниц (Word-файл)

Содержание работы

1  Методики моделирования нестационарного процесса тангенциального точения

1.1  Общий алгоритм моделирования процесса ТТ

В данной работе предлагается алгоритм моделирования процесса стружкообразования [[i]], целью которого является аналитическое определение сил резания и распределения контактных напряжений на поверхностях лезвия при заданных режимах и условиях обработки, геометрии и свойствах материалов системы «инструмент-заготовка» .

Учитывая особенности процесса ТТ, принимаем следующую упрощенную физическую модель процесса при прямоугольном резании. Внедрение лезвия в материал заготовки с заданной скоростью приводит к возникновению напряженно-деформированного состояния (НДС) материала заготовки, подчиняющегося законам теории пластичности. При этом считаем, что материал заготовки является упруго-пластической средой с линейным упрочнением (см. раздел 3 и рисунок 3.4). В результате относительного движения стружки по передней поверхности и заготовки вдоль задней поверхности лезвия имеет место трение, приводящее совместно с процессами деформирования к выделению тепла, которое в свою очередь , перераспределяясь, вызывает изменение свойств среды, и, следовательно, влияет на НДС и процесс образования новой поверхности. Таким образом, получаем замкнутую систему (систему резания), в которой происходящие процессы взаимно обуславливают характер протекания каждого из них и влияют друг на друга.

Принимая во внимание взаимосвязь и взаимовлияние описанных выше процессов в виде принятого математического описания, приходим к алгоритму, представляющего собой итерационный процесс расчета сил резания и свойств упрочненного и нагретого материала в конечном числе точек цикла обработки с учетом результатов расчета в предыдущих точках. В этих точках вычислительная процедура сводится к численному интегрированию системы дифференциальных уравнений теории пластичности (см. раздел 3). Как указывалось ранее, в настоящее время для решения подобных задач широко используют конечноразностные (КР) методы и метод конечных элементов (КЭ), что не исключает возможности применения и других методов.

Наиболее полная информация о состоянии процесса резания может быть получена из расчета полей напряжений и температур в рабочей зоне. Совместный расчет НДС и температурных полей позволяет учесть взаимо­влияние НДС и теплового со­стояния системы. На рисунке 4.1 предложена обобщенная блок-схема алгоритма решения этой задачи для нестационарных ви­дов обработки, в том числе и ТТ. В общем виде алгоритм представляет собой итерационный процесс решения системы нелинейных дифферен­циальных уравнений. Для этого цикл обработки нестационар­ного процесса делится на N уча­стков, величина которых зависит от метода интегриро­вания дифференциальных уравнений (блок 5 и 8), а значение изменяющейся вели­чины принимается равным среднему значению на участке.

Рисунок 4.1 – Блок схема совместного моделирования НДС и температурных полей в зоне резания нестационарных видов обработки

Сначала выполняют расчет НДС для всех участков цикла обработки и кор­ректируют на каждом последующем участке геометрическую модель и свойства материала заготовки в соот­ветствии с результатами предыдущих расчетов (цикл 4). После этого рассчи­тывают интенсивность и закон распре­деления источников и стоков теплоты (блок 7) и выполняют расчет темпера­турных полей в зоне резания в течение всего цикла “резание» (блок 8).

Итерационный процесс прекраща­ется в случае изменения контролируе­мой величины (например, максималь­ной температуры резания) за две пре­дыдущие итерации менее заданного значения, т. е.

.         ( 4.1)

В противном случае расчет повторяется заново (блок 10) с учетом изменения свойств материала под действием температуры (блок 9).

Результаты расчета представляют собой распределения напряжений и температур в зоне резания и отобра­жаются на в виде диаграмм линий одинаковых напряжений и изотерм.

Существенно упростить предло­женный алгоритм и уйти от итерационного процесса по­зволяет применение полуэксперимен­тального метода моделирования, заключающегося в том, что такие параметры процесса как на­пример, силы резания и усадка стружки определяются экспериментально и являются входными данными для расчета НДС и температурных полей в зоне резания.

Рисунок 4.2 – Блок схема полуэксперимен­тального моделирования НДС и темпера­турных полей в зоне резания нестационар­ных видов обработки

Поскольку экспериментально определенные параметры уже учитывают влияние деформаций и температур на свойства материалов в зоне резания может быть принят линейный алгоритм (рисунок 4.2) последовательного расчета НДС и температурных полей. Однако указанный алгоритм требует проведения эксперимента и не является рациональным с экономической точки зрения. Более того, такой подход не позволяет прогнозировать характеристики процесса резания в области, где проведение экспериментов невозможно по тем или иным причинам.

В основу приведенных алгоритмов положены известные законы теорий пластичности, теплофизики и др. требующие для решения значительного объема вычислений. Однако современное развитие ЭВМ позволяют реализовать эти вычисления в короткие сроки.

Таким образом, представленный алгоритм моделирования процесса стружкообразования при нестационарных видах обработки и, в частности, при ТТ позволяет выполнить анализ деформационных и тепловых процессов в зоне стружкообразования и рассчитать упругопластические свойства обработанной поверхности не только в экспериментально исследованной области варьирования режимов обработки, но и в областях не допустимых для экспериментального исследования из-за различных факторов: недопустимого уровня вибраций, низкой стойкости инструмента из-за случайного (усталостно-адгезионного) разрушения и т.п. Кроме того, по полученным данным возможно выполнить анализ процессов, обуславливающих стойкость и надежность инструмента, динамическое состояние технологической системы и качества обработанной поверхности, что в свою очередь позволит определить оптимальные условия и параметры режима обработки.

1.2  Методика моделирования процесса образования стружки с применением метода КЭ

В современных условиях развития машиностроения специалисты в области механики сплошных сред и теории механической обработки все больше уделяют внимание построению математической модели процесса резания. В данном разделе рассмотрена возможность и особен­ности построения полуэкспериментальной математической модели для анализа деформационных процессов и процессов теплопередачи в зоне стружкообразования при свободном тангенциальном точении.

1.2.1  Выбор вида КЭ и генерация КЭ сетки расчетной модели

Решение поставленной задачи является частью предложенного в предыдущем пункте алгоритма (см. рисунок 4.2). Для ее реализации целесообразно применить метод конечных элементов (МКЭ), основные принципы которого описаны в разделе 3. В соответствии с этими принципами исследуемая область делится на конечное число дискретных элементов.

Похожие материалы

Информация о работе