Monte Carlo simulation of colloidal membrane filtration: Model development with application to characterization of colloid phase transition, страница 15

[25]  G.M. Bell, S. Levine, L.N. McCartney, Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres, J. Colloid Interface Sci. 33 (1970) 335–359.

[26]  W.C. Chew, P.N. Sen, Potential of a sphere in an ionic solution in thin double layer approximations, J. Chem. Phys. 77 (1982) 2042– 2044.

J.C. Chen et al. / Journal of Membrane Science 255 (2005) 291–305

[27]  W.R. Bowen, F. Jenner, Dynamic ultrafiltration model for charged colloidal dispersions: a Wigner-Seitz cell approach, Chem. Eng. Sci. 50 (1995) 1707–1736.

[28]  N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087–1092.

[29]  W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970) 97–109.

[30]  V.I. Manousiouthakis, M.W. Deem, Strict detailed balance is unnecessary in Monte Carlo simulation, J. Chem. Phys. 110 (1999) 2753–2756.

[31]  A.S. Kim, E.M.V. Hoek, Cake structure in dead-end membrane filtration: Monte Carlo simulation, Environ. Eng. Sci. 19 (2002) 373–386.

[32]  A.S. Kim, S. Bhattacharjee, M. Elimelech, Shear-induced reorganization of deformable molecular assemblages: Monte Carlo studies, Langmuir 17 (2001) 552–561.

[33]  G.Y. Onoda, E.G. Liniger, Random loose packing of uniform spheres and the dilantancy onset, Phys. Rev. Lett. 64 (1990) 2727–2730.

[34]  R.M. McDonogh, A.G. Fane, C.J.D. Fell, H.-C. Flemming, The influence of polydispersity on the hydraulic behaviour of colloidal fouling layers on membranes: perturbations on the behaviour of the “ideal” colloidal layer, Colloids Surf. A: Physicochem. Eng. Aspects 138 (1998) 231–244.

[35]  T. Bahners, E. Schollmeyer, Computer simulation of the filtration process in a fibrous filter collecting polydisperse dust, J. Aerosol Sci. 17 (1986) 191–197.

[36]  M.R. Mackley, N.E. Sherman, Cross-flow filtration with and without cake formation, Chem. Eng. Sci. 49 (1994) 171–178.

[37]  E.R. Damiano, D.S. Long, F.H. El-Khatib, T.M. Stace, On the motion of a sphere in a Stokes flow parallel to a Brinkman half-space, J. Fluid Mech. 500 (2004) 75–101.

[38]  M. Elimelech, J. Gregory, X. Jia, W. Williams, Particle Deposition and Aggregation: Measurement, Modeling, and Simulation, Butterworths/Heinemann, Oxford, 1995.

[39]  P. Bacchin, P. Aimar, V. Sanchez, Model for colloidal fouling of membranes, AIChE J. 41 (1995) 368–376.

[40]  P. Bacchin, A possible link between critical and limiting flux for colloidal systems: consideration of critical deposit formation along a membrane, J. Membr. Sci. 228 (2004) 237–241.

[41]  J.A. Howell, T.C. Arnot, H.C. Chua, P. Godino, D. Hatziantoniou, S. Metsamuuronen, Controlled flux behaviour of membrane processes, Macromol. Symp. 188 (2002) 23–35.

[42]  R. Chan, V. Chen, The effects of electrolyte concentration and ph on protein aggregation and deposition: critical flux and constant flux membrane filtration, J. Membr. Sci. 185 (2001) 177–192.

[43]  S. Metsamuuronen, J. Howell, M. Nystrom, Critical flux in ultrafiltration of myoglobin and baker’s yeast, J. Membr. Sci. 196 (2002) 13–25.

[44]  V. Chen, A.G. Fane, S. Madaeni, I.G. Wenten, Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation, J. Membr. Sci. 125 (1997) 109–122.