[3] W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions, Cambridge University Press, New York, 1989.
[4] R.S. Faibish, M. Elimelech, Y. Cohen, Effect of interparticle electrostatic double layer interactions on permeate flux decline in crossflow membrane filtration of colloidal suspensions: an experimental investigation, J. Colloid Interface Sci. 204 (1998) 77–86.
[5] C.A. Romero, R.H. Davis, Transient model of crossflow microfiltration, Chem. Eng. Sci. 45 (1990) 13–25.
[6] L.F. Song, M. Elimelech, Theory of concentration polarization crossflow filtration, J. Chem. Soc., Faraday Trans. 91 (1995) 3389–3398.
[7] A. Zydney, C.K. Colton, A concentration polarization model for the filtrate flux in cross-flow microfiltration of particulate suspensions, Chem. Eng. Commun. 47 (1986) 1–21.
[8] J.C. Chen, A.S. Kim, Review of Brownian dynamics, molecular dynamics and Monte Carlo modeling of colloidal systems, Adv. Colloid Interface Sci. 112 (2004) 159–173.
[9] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, UK, 1994.
[10] V.V. Tarabara, I. Koyuncu, M.R. Wiesner, Effect of hydrodynamics and solution ionic strength on permeate flux in cross-flow filtration: direct experimental observation of filter cake cross-sections, J. Membr. Sci. 241 (2004) 65–78.
[11] M.R. Mackley, N.E. Sherman, Cake filtration mechanisms in steady and unsteady flows, J. Membr. Sci. 77 (1993) 113–121.
[12] G. Green, G. Belfort, Fouling of ultrafiltration membranes: lateral migration and the particle trajectory model, Desalination 35 (1980) 129–147.
[13] A.G. Fane, Ultrafiltration of suspensions, J. Membr. Sci. 20 (1984) 249–259.
[14] V.V. Tarabara, F. Pierrisnard, C. Parron, J.-Y. Bottero, M.R. Wiesner, Morphology of deposits formed from chemically heterogeneous suspensions: application to membrane filtration, J. Colloid Interface Sci. 256 (2002) 367–377.
[15] J.C. Chen, Q. Li, M. Elimelech, In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration, Adv. Colloid Interface Sci. 107 (2004) 83–108.
[16] R.W. Field, D. Wu, J.A. Howell, B.B. Gupta, Critical flux concept for microfiltration fouling, J. Membr. Sci. 100 (1995) 259–272.
[17] D. Wu, J.A. Howell, R.W. Field, Critical flux measurement for model colloids, J. Membr. Sci. 152 (1999) 89–98.
[18] C.A. Romero, R.H. Davis, Global model of crossflow microfiltration based on hydrodynamic particle diffusion, J. Membr. Sci. 39 (1988) 157–185.
[19] S. Bhattacharjee, A.S. Kim, M. Elimelech, Concentration polarization of interacting solute particles in cross-flow membrane filtration, J. Colloid Interface Sci. 212 (1999) 81–99.
[20] S. Sethi, M.R. Wiesner, Modeling of transient permeate flux in crossflow membrane filtration incorporating multiple particle transport mechanisms, J. Membr. Sci. 136 (1997) 191–205.
[21] J. Happel, Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles, AIChE J. 4 (1958) 197–201.
[22] B.V. Derjaguin, L.D. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochim. URSS 14 (1941) 733–762.
[23] E.J. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.
[24] H.C. Hamaker, The London-van der Waals attraction between spherical particles, Physica 4 (1937) 1058–1072.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.