Excel, решение численных задач, линейных и нелинейных уравнений, страница 9

С целью проверки результатов можно вычислить определенный интеграл вручную

                                          1                        1

                                   S = òХ2dx = Х3/3  = 1/3=0,333.

                                         0                         0

Видим, что результат, полученный методом трапеций, уже весьма близок к точному.

11.3. Решение дифференциальных уравнений

Дифференциальные уравнения являются основной формой представления математических моделей. Напомним, что уравнение, в котором неизвестная функция входит под знаком производной или дифференциала, называется дифференциальным уравнением. Если неизвестная функция, входящая в дифференциальное уравнение, зависит только от одной независимой переменной, то уравнение называется обыкновенным. Обыкновенное дифференциальное уравнение в общем случае содержит независимую переменную (X), неизвестную функцию (Y(X)) и ее производные (dY/dX) до n-го порядка и имеет вид

F(X, Y, Y¢, Y², ... , Y(n))=0.

Порядком дифференциального уравнения называется наивысший порядок производной, входящей в уравнение.

Здесь мы рассмотрим технику решения обыкновенных дифференциальных уравнений с начальными условиями, т.е. таких, для которых известны значения искомой функции и ее производных (до n-1 порядка) при Х=0. Решение уравнений в такой постановке называется задачей Коши.

Известно, что аналитическое решение дифференциальных уравнений возможно лишь в небольшом числе случаев. В остальных случаях оно доступно только с помощью численных методов. Самый простой из них – метод Эйлера. Суть метода применительно к дифференциальному уравнению первого порядка dY/dX=Y(X,Y) с начальными условиями Y(X0)=Y0 поясняет рис. 11.3а.

Рис. 11.3а

 

Решением уравнения является такая функция Y(Х), которая, будучи подставленной в уравнение, превращает его в тождество. Само уравнение не известно. В начальных условиях задается только одна его точка Y(Х0). Разобьем весь диапазон интегрирования уравнения на участки с одинаковым шагом DХ и попытаемся найти значение искомой функции Y(Х) в точке Х1=Х0+DХ.