БИОФИЗИЧЕСКИЕ ОСНОВЫ ДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ОРГАНИЗМ.
В МЕДИЦИНЕ.
При взаимодействии лазерного излучения с биотканью происходят процессы отражения, поглощения и рассеяния света. Поверхность биологической ткани отражает от 20 до 50 % лазерного излучения. Энергия поглощенного лазерного излучения трансформируется в биологической ткани в другие виды энергии: тепловую, энергию излучения (люминесценции), электрическую (электрический ток) и т. д. Характер взаимодействия света с тканью зависит от свойств света (его спектрального состава, поляризации, интенсивности, степени когерентности и направления распространения) , от свойств биологической ткани (ее внутренней структуры). Значительное влияние на процесс поглощения света в ткани способны оказывать внешние условия: температура, механическое давление, электрическое и магнитное поля.
Лазерного излучение способно разрушать слабые ионные и ион-дипольные связи в молекулах и комплексах и создавать свободные ионы.
В процессе поглощения лазерного излучения в биоткани возникает внутренний фотоэффект, увеличивается концентрация свободных носителей заряда, возрастает величина электропроводности. Если в приповерхностных слоях биообъектов поглощается больше фотонов, чем во внутренних, то при определенных условиях возникает фотоэлектродвижущая сила, направленная к поверхности. От поверхности вглубь ткани начинает протекать фототок, величина которого зависит от мощности излучения. Возрастание концентрации свободных носителей - электронов- косвенным образом влияет на величины диэлектрической проницаемости и магнитной восприимчивости биоткани.
При совмесном воздействии на биоткань лазерного излучения и магнитного поля наблюдается эффект Кикоина-Носкова. На возникающий в ткани фототок, направленный перпендикулярно приложенному магнитному полю, действует магнитное поле, что приводит к образованию фотоэлектродвижущей силы в несколько десятков вольт. Возникающие приэтом ионы разносятся магнитным полем, не рекомбинируя, и выстраиваются в виде диполей вдоль силовых линий магнитного поля. В случае направления силовых линий магнитного поля вглубь биоткани, большая часть ионов и поляризованных молекул выстраиваются вглубь ткани, что существенно увеличивает глубину воздействия светового потока. Т. о. при совместном воздействии лазерного излучения и магнитного поля на ткань единицей объема ткани усваивается большее количество энергии. Эти данные лежат в основе методов магнитолазерной терапии.
В основе молекулярного механизма биологической активности низкоинтенсивного лазерного излучения лежат фотохимические эффекты взаимодействие излучения с биомолекумами и более сложными структурными компонентами клетки и явления, приводящие к изменению пространственной структуры макромолекул, мембран. Фотофизическая природа изменений пространственной структуры компонентов клетки заключается в переориентации отдельных упорядоченных анизотропных участков молекул и мембран (доменов). Предполагают, что данный эффект обусловлен не поглощением света, а вследствие действия вектора Е световой волны на индуцированный этой же световой волной интегральный диполь домена.
Существуют и иные точки зрения на механизм действия низкоинтенсивного лазерного излучения. Так, в красной области спектра, в области излучения полупроводниковых и газовых лазеров, лежит полоса поглощения фермента каталазы. Повышение активности каталазы в результате облучения облучения лазером положительно влияет на антиоксидантную систему организма с последующими физиологическими эффектами.
Механизм действия ИК-лазеров связан не столько с фотохимическими превращениями молекул, сколько с повышением амплитуды тепловых колебаний молекул биотканей. Так, ИК-излучение вызывает тепловое расширение цитоплазматической мембраны.
Согласно имеющимся данным, низкоинтенсивному лазерному излучению, присущи следующие терапевтические эффекты: трофикорегенераторный, противовоспалительный, противоотечный, анальгетический, иммунномодулирующий, десенсибилизирующий и бактерицидный. Лазеры используются при лечении деструктивных форм острого холецистита, хронических неспецифических заболеваний легких (бронхиты, пневмония, бронхиальная астма), остеоартроза, постравматической артропатии, трофической язвы, атеросклероза, язвенной болезни желудка, хронических гепатитов, а также в целях воздействия на метаболические и репаративные процессы для профилактики послеоперационных осложнений.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.