Определение длины волны излучения гелий-неонового лазера с помощью дифракционной решетки. Определение размеров эритроцитов с помощью дифракции лазерного излучения на мазке крови, страница 11

Рис. 4.

Пусть из точки a к стержню направляется только один квант света. К зеркалу придет уже 10 квантов. Отразившись от него, они вторично пройдут всю длину усиливающей среды. На зеркало 4 упадет уже 100 квантов: 99 из них отразятся обратно, 1 выйдет наружу. После завершения ещё одного цикла в световом потоке будет уже 9900 квантов, 99 из них выйдет наружу, а 9801 квант начнет следующий цикл, это снова увеличит число квантов в 100 раз и т.д. Таким образом, многократное повторение процесса усиления, возникающее при наличии зеркал, по своему эффекту эквивалентно существенному увеличению длины активного вещества. В каждом цикле при подходе к выходному зеркалу 4 1% световых квантов покинет резонатор. При этом поток энергии, выходящий за пределы резонатора, оказывается весьма значительным. Он и представляет собой лазерный луч, изображенный стрелками на рис. 4. Этот луч существует до тех пор, пока накачка поддерживает инверсию в активной среде.

Благодаря резонатору создается не только значительное усиление света, он также формирует направленное излучение и монохроматизирует его. Обычно активная среда заполняет цилиндрическую трубку, либо представляет собой цилиндрический стержень. Ясно, что максимально усилятся лучи, распространяющиеся параллельно оси цилиндра, все выйдут наружу. Как правило, энергетические уровни активной среды обладают сложной структурой и лазер способен излучать несколько длин волн в соответствующем диапазоне. Зеркала резонатора делаются многослойными для того, чтобы создать вследствие интерференции необходимый коэффициент отражения только для одной длины волны, благодаря чему генерируется строго монохроматическое излучение.

Надо также иметь в виду, что лазерный луч возникает лишь при выполнении следующего условия: усиление светового потока за один цикл (двойное прохождение света внутри активной среды) должно быть больше или по крайней мере равно потерям энергии излучения при выходе его за пределы резонатора.

Прежде чем переходить к рассмотрению принципа действия конкретных лазерных систем, ещё раз перечислим основные свойства лазерного излучения.

Во-первых, лазерный луч обладает высокой направленностью (малой расходимостью). Угол расходимости лазерного луча составляет обычно несколько угловых минут, это значительно меньше, чем расходимость например, прожекторного луча. Величина угла расходимости ограничена определенными техническими причинами и дифракционными явлениями.

Во-вторых, лазерное излучение в высокой степени монохроматично. Любой поток электромагнитных волн всегда обладает некоторым набором частот. Этот набор частот минимален для лазера.

В-третьих, свет, испускаемый квантовым генератором, обладает высокой степенью когерентности.

Лазеры - устройства, характеризующиеся самой разной мощностью излучения: от 1 мВт до десятков кВт. Такой диапазон изменения этой величины недоступен никаким другим источникам света.

В зависимости от режима работы ОКГ делятся на непрерывные и импульсные. В импульсном режиме возможно введение в активную среду без ее изменения значительно большей энергии, чем за то же время в непрерывном режиме. Поэтому импульсные лазеры более мощные, чем непрерывные.

Уникальные свойства лазерного излучения предопределили их широкое использование. Выбор того или иного ОКГ и режима его работы зависит от конкретно решаемой задачи. В медицине наибольшее распространение получили импульсный рубиновый лазер (длина волны генерации l= 0,694 мкм) и работающие в непрерывном режиме газовые лазеры: гелий-неоновый (l= 0,632 мкм), аргоновый (l= 0,5 мкм), ОКГ на смеси CO2 и N2 (l= 10,6 мкм), CO - лазер (l= 5,3 мкм).

КЛАССИФИКАЦИЯ ЛАЗЕРОВ.

Лазеры можно классифицировать по особенностям активной среды (твердотельные лазеры, газовые лазеры, лазеры на красителях) и по способу накачки (лазеры с оптической накачкой, газоразрядные лазеры, химические лазеры). Но любая из классификаций не выглядит убедительной, так как в рамки одного и того же класса попадают системы, совершенно не похожие по другим признакам. По совокупности признаков (среда, способ накачки, генерируемая мощность и др.) удобно выделить следующие виды лазеров.