Управление качеством переходных процессов в многосвязных системах. Задание на курсовое проектирование, страница 13

Приращения параметров режима через их частные производные записываются следующим образом:

          ¶U            ¶U                                                                                          DU = —— Dd + —— DEq                                                                   (2.63)                    ¶d             ¶Eq

          ¶wu                ¶wu                                                                                    Dwu = —— pDd + ——– pDEq                                                           (2.64)                    ¶pd              ¶pEq

Используя эти выражения, выразим DEr через Dd и DEq:

                   ¶U                 ¶U                   ¶w                     ¶w                           DEr = ( WU —– Dd + WU —– DEq + Ww —– pDd + Ww —— pDEq +                                     ¶d                  ¶Eq                  ¶pd                  ¶pEq

+ WEq) Wok                                                                                         (2.65)

Вынося за скобки Dd и DEq, имеем:

                          ¶U                    ¶w                              ¶U                                DEr = ( WUWOK —– + WwWOK —– p)Dd + (WUWOK —– +                                                           ¶d                    ¶pd                              ¶Eq

                  ¶w                                                                                                   + WwWOK ——– + WEqWOK) DEq                                                        (2.66)                          ¶pEq

Обозначим:

                        ¶U                                                                                             WUd = WUWOK—–                                                                              (2.67)                                  ¶d

                        ¶w                                                                                     Wwd = WwWOK —–  (2.68)                                                                                                                           ¶pd

                            ¶U                                                                                 WUEq = WUWOK —— + WEqWOK                                                                                          (2.69)                                     ¶Eq

                           ¶w                                                                                          WwEq = WwWOK ——                                                                           (2.70)                                    ¶pEq

С учетом (2.67) – (2.70) выражение (2.66) примет вид:

DEr = ( WUd + Wwdp )Dd + (WUEq +WwEqp )DEq

                                                                                                          (2.71)

                                                 Dd                    Dd                                                                                             —— (p)                                                                           DEr                              DEr