. (2. стр
75.)
Число ремней передачи [6]:
;
(2. стр 76.)
где
- окружное усилие, кН;
Н = 2,63 кН
где
- коэффициент динамичности
нагрузки и режима работы,
= 1,4 [5.табл. 14.6];
P – передаваемая мощность;
- скорость ремня.
- усилие передаваемое
одним ремнем,Н
= 0,82 кН[5,
рис. 14.10];
=0,89- коэффициент
учитывающий длину ремня [6.табл.2.2.5];
=094- коэффициент
учитывающий угол обхвата [6.табл.2.2.4];
=1- коэффициент
учитывающий скорость ремня [6.табл.2.2.2.].
- коэффициент режима
работы, при двухсменной работе
=
0,87.
Принимаем 4 ремня.
2.4.2. Расчет зубчатой передачи.
Рассчитаем основные параметры зубчатой передачи с помощью, которой передается крутящий момент от одного вала к другому(в вибраторе):
Данная зубчатая передача состоит из двух колес, одинаковых диаметров.
момент на зубчатом
колесе.
коэффициент зубчатого колеса.
частота вращения 1-го вала вибратора.
частота вращения 2-го вала вибратора.
Материал колес - Сталь 40ХН прошедшая поверхностную закалку,
НRC =
50…55,
и
.
Принимаем
предварительно коэффициент нагрузки
т.к. колеса
расположены на краях валов и поэтому валы могут испытывать изгибающий момент.
Передаточное число

По графику (2,
рис. 10.12) по
,
,
, допускаемому
контактному напряжению для материала колеса
, и
для прямозубых
колес находим межосевое расстояние
и округляем его,
по ГОСТу 2185-66 принимаем
.
Принимаем модуль по соотношению:
![]()
Принимаем по ГОСТу9563-60
![]()
Суммарное число зубьев:

Число зубьев 1-го колеса:

принимаем ![]()
Поскольку колеса равны, то число зубьев второго колеса будет равно:
![]()
Фактическое передаточное число:

Основные размеры колес:
![]()
![]()
![]()
Ширина колес:
![]()
Окружная скорость:

По (2, табл. 10.8) принимаем 9-ю степень точности.
Уточняем
коэффициент нагрузки. По (2, табл. 10.11) в зависимости от
и 9-ой степени
точности находим
.
По формуле подсчитаем:

По (2, табл. 10.9) для скорости 11,3 м/с при твердости до НRC = 650 для
9-ой степени точности
находим
.
Коэффициент нагрузки:
![]()
Проверяем расчетные контактные напряжения по формуле:

Проверка прочности зубьев на изгиб:
Находим произведения
:
![]()
Расчетное напряжение изгиба в опасном сечении зуба колес:
, следовательно, прочность на изгиб
обеспечена.
2.5. Расчет эксцентрикового вала.
Расчёт произведём для первого вала вибратора, так как он более нагружен.
Принимаем
материал вала сталь 40X. [
]
=320 МПа,
=600 МПа, НВ=260 с
последующей термообработкой.
Вращающий момент
= 261,3
Нм.
Сила передаваемая клиноременной передачей
Fp=
= 2630
Н.
Силы, действующие на зубчатое колесо:
Окружная сила:
Н.
где
- делительный
диаметр, м.
Радиальная сила:
Н.
где
- угол зацепления (для
прямозубых передач
).
Осевая сила:
Н.
где
- угол наклона линии
зуба на делительном цилиндре.
- у
прямозубых колес.
Определяем опорные реакции в опорах А и В в горизонтальной плоскости.
∑МА= 0:
![]()

∑МВ= 0:
![]()

Проверяем ∑Y = 0
− реакции определены,
верно.
Определяем опорные реакции в вертикальной плоскости :
∑МА= 0:
![]()
∑МВ= 0:
![]()
![]()

Проверяем ∑Z= 0
![]()
Реакции определены верно.
Определяем суммарные опорные реакции:
![]()
![]()
Построение эпюр
,
,
,
,
.
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
Определяем суммарные изгибающие моменты:
![]()
![]()
Определяем суммарные эквивалентные моменты:
![]()
![]()
Определяем расчётный диаметр вала
мм.
Согласно ГОСТ 6636-69 принимаем под конец вала со шкивом d = 70мм, под подшипник d = 110 мм, под пластины d = 160мм.
2.6. Расчет шпоночных соединений.
Для соединения валов с деталями, передающими вращение, используем призматические шпонки.
Проверка шпонки на смятие рабочих граней должна удовлетворять условию [3 стр.236] :
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.