Должен быть почитаем, как бог, тот, кто хорошо может определять и разделять.
Платон
глава 14
ЭЛЕМЕНТЫ ЦИФРОВОЙ ОБРАБОТКИ СИГНАЛОВ
14.1. Изучаемые вопросы
Взаимосвязь аналоговых и дискретных сигналов. Линейные стационарные цепи. Импульсная характеристика. z-преобра-зование. Трансверсальные и рекурсивные цепи. Дискретное преобразование Фурье. [1, 12.5¼12.8,12.13; 2, 15.1¼15.6; 3, 10.1¼10.5; 25, 2.4, 2.5, 3.1¼3.4, 4.1¼4.5].
14.2. Краткие теоретические сведения
Аналоговый сигнал со спектральной плотностью , такой, что
при
может быть без потери информации заменен импульсным сигналом
,
где , или последовательностью отсчетов
; .
Спектральная плотность последовательности определяется преобразованием Фурье
.
Обратное преобразование Фурье
задает представление последовательности в “сплошном” базисе комплексных экспоненциальных последовательностей
со спектральной плотностью амплитуд .
При справедлива связь спектральных плотностей
.
Функция периодична по с периодом ; функция периодична по с периодом .
Линейная стационарная (инвариантная к сдвигу) цифровая цепь однозначно описывается последовательностью , называемой импульсной характеристикой (ИХ), причем если цепь устойчива, то ИХ абсолютно суммируема, т. е. .
Импульсная характеристика представляет собой реакцию цифровой цепи на -последовательность, описываемую выражением
Последовательность “скачка”
используется для описания последовательностей, равных нулю при отрицательных n (такие последовательности называются каузальными).
Выходная последовательность связана с входной последовательностью и импульсной характеристикой выражением дискретной свертки
.
Передаточная (системная) функция цепи определяется z-преобразованием импульсной характеристики
.
Соотношением
связаны z-образы входной и выходной последовательностей и импульсной характеристики.
Обратное z-преобразование
,
где интеграл берется по контуру С, лежащему в области существования (сходимости) z-образа ; направление обхода положительно (против часовой стрелки).
Если z-образ имеет вид полинома
,
то, очевидно, .
Если z-образ представляет собой дробно-рациональную функцию, т. е. частное двух полиномов
,
то при делении полиномов получается бесконечный ряд, причем коэффициенты ряда равны соответствующим отсчетам .
Основные свойства z-преобразования приведены в табл. 14.1.
Подстановка в выражения z-образов входной и выходной последовательностей и импульсной характеристики дает соответственно спектральные плотности последовательностей и комплексную частотную характеристику (КЧХ):
;
;
,
так что
.
Цифровая каузальная цепь конечного порядка описывается разностным уравнением
,
где выходной отсчет не зависит от «будущих» значений входа и выхода.
Импульсная характеристика такой цепи при .
Передаточная функция:
.
Числитель дроби описывает трансверсальную, а знаменатель – рекурсивную части схемы, поэтому трансверсальная цепь умножает z-образ входной последовательности на полином , а рекурсивная – делит на полином .
Для последовательности , конечной длины существует дискретное преобразование Фурье (ДПФ)
,
определяющее отсчетов , спектральной плотности или отсчетов z-образа, взятых равномерно по окружности единичного радиуса в z-плоскости.
Обратное ДПФ
, .
Таблица 14.1
Последовательность |
z-образ |
14.3. Задачи
1. Случайный сигнал имеет спектральную плотность мощности
,
где – постоянная.
Определите частоту дискретизации так, чтобы на этой частоте СПМ составляла . Оцените мощность ошибки представления этого сигнала последовательностью. Как уменьшить эту ошибку?
2. Сигнал представляет собой импульс прямоугольной формы длительностью 10 мкс. Сигнал дискретизируется с шагом 1 мкс.
Запишите формулу для вычисления энергии ошибки дискретизации.
3. Цифровая цепь описывается разностным уравнением
.
Проверьте инвариантность к сдвигу.
4. Цифровая цепь описывается разностным уравнением
.
Проверьте инвариантность к сдвигу.
5. Цифровая цепь описывается разностным уравнением
.
Проверьте каузальность.
6. Цифровая цепь описывается разностным уравнением
.
Проверьте каузальность.
7. Реакция цифровой цепи на воздействие описывается выражением
.
Проверьте линейность цепи.
8. Реакция цифровой цепи на воздействие описывается выражением
.
Проверьте линейность цепи.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.