ЛЕКЦИЯ 23
Основы расчета теплообменных аппаратов
23.1. Общие сведения
Различают проектный и поверочный расчеты процессов теплообмена. Задачей проектного расчета является определение размеров и режима работы теплообменника, необходимого для подвода или отвода заданного количества теплоты к тому или иному теплоносителю. Цель поверочного расчета – определение количества теплоты, которое может быть передано в конкретном теплообменнике при заданных условиях его работы. В обоих случаях расчет основывается на использовании уравнений теплового баланса и теплопередачи.
При проектном расчете известны или заданы количество нагреваемого или охлаждаемого вещества и его параметры на входе в теплообменник и на выходе из него. При этом определяют необходимую поверхность теплообменника, расход горячего или холодного теплоносителя, геометрические размеры теплообменника заданной конструкции и его гидравлическое сопротивление. В заключение на основе проведенных расчетов подбирают стандартный или нормализованный теплообменник определенной конструкции. Выбранная конструкция по возможности должна быть оптимальной, т.е. сочетать интенсивный теплообмен с низкой стоимостью и простотой в эксплуатации.
Поверочный расчет выполняют, чтобы определить, можно ли использовать имеющийся теплообменник для тех или иных целей, определяемых технологическими требованиями.
До проведения расчета рекуперативных теплообменников производят выбор пространства для движения теплоносителя с целью улучшения условий теплоотдачи со стороны теплоносителя с большим термическим сопротивлением. Для этого жидкость, обладающую большой вязкостью или расход которой меньше, рекомендуется направлять в то пространство, где скорость ее может быть выше. Теплоносители, содержащие загрязнения, направляют в пространства, поверхности которых легче могут быть очищены от отложений. Выбор пространства должен учитывать также потери тепла в окружающую среду.
Предварительно выбирают и направление взаимного движения теплоносителей, учитывая преимущество противотока при теплообмене без изменения агрегатного состояния теплоносителей, а также целесообразность совпадения направлений вынужденного и свободного движения теплоносителя.
Очень важен правильный выбор оптимальных скоростей движения теплоносителей, так как это имеет решающее значение при конструировании и эксплуатации теплообменника. С увеличением скорости потоков увеличивается коэффициент теплопередачи , а следовательно, уменьшается необходимая поверхность теплопередачи , что в свою очередь ведет к уменьшению габаритных размеров теплообменника и его стоимости. Кроме того, с увеличением скорости уменьшается возможность образования отложений на поверхности теплообмена. Однако при чрезмерном повышении скорости движения потока увеличивается гидравлическое сопротивление теплообменника, что приводит к вибрации труб и гидравлическим ударам. Оптимальная скорость определяется из условий достижения желаемой степени турбулентности потока. Обычно стремятся, чтобы скорость потока в трубах соответствовала критерию . В связи с этим рекомендуются следующие оптимальные скорости движения (м/с): воды и жидкостей с умеренной вязкостью – ; вязких жидкостей – ; воздуха и газов при умеренном давлении – ; насыщенного пара под давлением – ; насыщенного пара под вакуумом – . Наиболее желателен выбор оптимальной скорости на основе технико-экономического расчета.
Полный расчет теплообменника включает тепловой, конструктивный и гидравлический расчеты.
Тепловой расчет. Тепловой расчет проектируемых теплообменников производят в следующей последовательности:
– рассчитывают тепловую нагрузку и расход теплоносителей;
– рассчитывают средний температурный напор и средние температуры теплоносителей;
– рассчитывают коэффициент теплопередачи и поверхность теплообмена.
Наиболее прост расчет при постоянных температурах теплоносителей по длине теплообменника. В этом случае физические свойства теплоносителей и разность температур постоянны и расчет сводится к определению коэффициента теплопередачи. Близкие к этим условиям наблюдаются в обогреваемых конденсирующимся паром кипятильниках. В общем случае температуры теплоносителей изменяются по длине теплообменника. Взаимосвязь изменений температур теплоносителей определяется условиями теплового баланса, который для бесконечно малого элемента теплообменника имеет вид:
, (23.1)
где , и , – расходы и теплоемкости теплоносителей, а и – их температуры в произвольном сечении аппарата.
Уравнение теплового баланса для всего аппарата без учета потерь тепла получают путем интегрирования последнего уравнения:
, (23.2)
где и , и – начальные и конечные температуры теплоносителей; – тепловая нагрузка.
Расходы теплоносителей при теплообмене без изменения агрегатного состояния на основании теплового баланса:
. (23.3)
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.