.
Объем жидкости за dt
. (6.40)
Одновременно с понижением уровня в резервуаре на dH объем жидкости в нем уменьшится на dW:
.
Знак минус принят потому, что напор Н понижается.
Следовательно,
. (6.41)
Отсюда, разделив переменные в дифференциальном уравнении (6.41), получим
. (6.42)
Проинтегрируем уравнение (6.42) в пределах от до :
.
Окончательно получим
. (6.43)
Полное опорожнение резервуара наступит при снижении уровня жидкости до оси насадка, т.е. . Тогда время опорожнения резервуара
. (6.44)
Объем резервуара .
Умножим и разделим уравнение (6.44) на , тогда получим
. (6.45)
Знаменатель уравнения (6.45) - расход Q при напоре Полное опорожнение резервуара при переменном напоре происходит за время, в 2 раза большее, чем истечение того же объема при постоянном напоре.
Истечение при переменном напоре в сообщающихся резервуарах
Рассмотрим два сообщающихся резервуара, соединенных между собой короткой трубой. Площади поперечных сечений резервуаров постоянны. Площадь первого равна , второго - . Жидкость из первого резервуара по короткой трубе площадью поперечного сечения перетекает во второй, при этом уровень жидкости в одном резервуаре понижается, а в другом - увеличивается (рис. 6.14). За время t уровни в обоих резервуарах сравниваются и переток жидкости прекращается.
Рис. 6.14. Истечение жидкости при переменном напоре в сообщающихся резервуарах
Обозначим напоры в начальный момент времени над центром отверстия трубы в резервуарах через и , разность напоров .
За время dt при перетоке жидкости из резервуара в резервуар уровень уменьшится на величину , в другом увеличится на .
Изменение напора за dt составит
. (6.46)
Объем жидкости в первом резервуаре уменьшится на , во втором увеличится на .
Следовательно, можно записать
, (6.47)
откуда
. (6.48)
Подставив из (6.48) в (6.46), получим
(6.49)
или
.
За время dt при напоре Н произойдет приток жидкости объемом dW во второй резервуар. Этот объем
. (6.51)
Уменьшение объема .
Следовательно,
. (6.52)
Разделим переменные, получим
. (6.53)
Подставим значение из (6.50) в (6.53), получим
. (6.54)
Интегрируем полученное уравнение в пределах от до и выносим постоянные за знак интеграла:
Отсюда время , за которое разность уровней изменится от от до ,
. (6.55)
Полное выравнивание уровней жидкости в резервуарах произойдет, когда .
Время, когда уровни сравняются, вычисляется по формуле
. (6.56)
♦ Пример 6.4
Определить время, за которое разность уровней Н в двух резервуарах уменьшится с до . Уровень воды в правом резервуаре поддерживается постоянным. В левом цилиндрическом резервуаре диаметр м. Резервуары соединены между собой трубой длиной м и диаметром мм. Эквивалентная шероховатость трубы мм, м, м (рис. 6.15).
Рис. 6.15. К примеру 6.4
Время изменения уровней в резервуарах находится по формуле (6.43):
.
Коэффициент расхода трубы ; (табл. П.4 приложения).
Полагаем, что движение воды в трубе соответствует квадратичной области сопротивлений. Коэффициент гидравлического трения определяем по формуле Шифринсона:
;
.
Площади поперечного сечения резервуара и трубы
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.