Изменчивость: изучение разнообразия
Одна из причин, по которым возникает необходимость в проведении статистического анализа, состоит в том, что данные изменчивы. Если бы данные не изменялись, то ответы на многие вопросы были бы просто очевидными и нам не нужно было бы обращаться к методам статистического анализа. Некоторые специалисты в области статистики в частных беседах отмечают, что именно наличие изменчивости данных обеспечивает им работу! Ситуация, в которой присутствует изменчивость, часто содержит риск, поскольку даже использование всей доступной информации не позволяет точно предугадать, что же произойдет в будущем. Для адекватной работы с риском необходимо понимать его природу и уметь измерять изменчивость (часто также используют термин "вариация"), которая является его следствием. Приведем несколько ситуаций, в которых изменчивость имеет важное значение.
Случай первый. Рассмотрим изменчивость производительности труда работников. Совершенно очевидно, что эффективность работы отдела определяется общей производительностью труда всех его сотрудников. Однако любые усилия, направленные на повышение производительности труда, должны учитывать индивидуальные особенности работников. Например, некоторые программы повышения производительности труда могут быть ориентированы на всех работников, в то время как другие — уделять особое внимание самым "быстрым" или самым "медленным" из них. Определение изменчивости производительности труда дает возможность выявить разброс таких индивидуальных различий и получить полезную информацию для планирования мероприятий по повышению общей производительности труда.
Случай второй. Фондовая биржа в среднем обеспечивает более высокую доходность вложенных средств, чем, например, фонды денежного рынка. Однако работа на фондовой бирже связана с большим риском, и инвестирование в акции может привести к реальным потерям. Таким образом, средняя, или "ожидаемая", доходность не отражает полностью всю картину. Мера изменчивости доходности отдельных инвестиций будет отражать уровень риска, сопряженного с каждым конкретным вложением средств.
Случай третий. Предположим, что вы сравниваете маркетинговые затраты своей фирмы с аналогичными затратами фирм, работающих в вашей отрасли промышленности, и обнаруживаете, что затраты вашей фирмы меньше затрат, типичных для данной отрасли. Для того чтобы оценить затраты на будущее, очень полезным может оказаться учет разброса соответствующих данных по отрасли. Найдя разность между значением затрат своей фирмы и средним значением по отрасли и сравнив полученную величину с мерой изменчивости затрат в отрасти, можно сделать вывод о том, находится ли маркетинговая деятельность вашей фирмы в сравнении с другими аналогичными фирмами лишь на несколько более низком уровне или же ваша фирма является некоторым исключением из общей картины. Такая информация может помочь в стратегическом планировании затрат на маркетинг в следующем году.
Изменчивость можно определить как степень различий между отдельными значениями. Подобный смысл имеют также такие понятия, как разнообразие, неопределенность, рассеяние и разброс. Далее мы увидим, что существуют три разных способа описания степени изменчивости набора данных, причем каждый из них требует соответствующих числовых значений.
1. Стандартное отклонение (в русскоязычной литературе по статистике часто также используют термины "среднее квадратическое отклонение" и "среднее квадратичное отклонение") используют наиболее часто. Этот показатель описывает, насколько сильно результат наблюдений обычно отличается от среднего значения. При возведении стандартного отклонения в квадрат получаем дисперсию.
2. Размах легко вычисляется, однако дает несколько поверхностное представление об изменчивости данных и имеет ограниченное применение. Эта величина описывает пределы изменения данных в наборе и представляет собой расстояние между минимальным и максимальным значениями.
3. Коэффициент вариации обычно выбирается в качестве относительной (в противоположность абсолютной) меры изменчивости. Этот показатель используется достаточно часто. Он показывает, насколько сильно обычно отличается результат конкретного наблюдения от среднего значения, в процентном отношении к среднему; при этом используется отношение стандартного отклонения к среднему значению.
5.1. Стандартное отклонение: традиционный выбор
Стандартное отклонение - это число, описывающее, насколько значения данных обычно отличаются от среднего. Понятие стандартного отклонения является очень важным в статистике, поскольку оно представляет собой основной инструмент определения степени случайности в изучаемой ситуации. В частности, этот показатель является мерой случайности отклонений отдельных значений от их среднего.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.