Атом водорода и водородоподобные системы

Страницы работы

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.

Содержание работы

                                                                                                                                Лекция 9-10

7. Атом водорода и водородоподобные системы

7.1.Свойства оператора момента импульса и его проекций. Собственные значения и собственные функции оператора момента импульса и его проекций

Оператор момента импульса имеет вид: . Оператор проекций момента импульса:

    (7.1)

Эти операторы не коммутируют друг с другом, поэтому не существует состояний с тремя определёнными проекциями момента импульса (за исключением ).

Оператор квадрата момента импульса  коммутирует с операторами проекций  , , .Это означает, что возможны состояния с определённым модулем момента импульса (с определённым значением М2) и какой-нибудь из его проекций. При изучении движения частиц в центральном поле целесообразно использовать сферические координаты r, θ, φ, причём

          x = r ·sin θ ·cos φ;     y = r ·sin θ ·sin φ;       z = r ·cos θ;    

тогда

Поскольку ось ОZ выбрана в качестве полярной оси, равноправие трёх декартовых осей координат ОX, OY, OZ при переходе к сферическим координатам теряется: теперь некоторое направление в пространстве выделено, и удобно рассматривать состояние с определёнными значениями  и  . Коммутирующие операторы  и   имеют общую систему собственных функций. Для того, чтобы найти эти функции, нужно решить уравнение:

                                            =                                            (7.2)

В сферических координатах:                  ,                                         (7.3)

где  поэтому уравнение (7.2) принимает вид:

Оно имеет однозначные, непрерывные и всюду ограниченные решения при условии: , (где ), которые определяются собственными значениями оператора квадрата момента импульса. Таким образом, значения квадрата модуля момента импульса частицы квантуются.  Квантовое число  определяет модуль момента импульса. Состояния с небольшими значениями  часто обозначаются буквами:

0

1

2

3

4

5

6

обозн.

s

p

d

f

g

h

i

Похожие материалы

Информация о работе

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.