ЗАДАЧА 10. Определить запасы устойчивости системы по модулю и фазе:
Решение: передаточная функция разомкнутой системы примет вид :
Строим ЛАЧХ и ЛФЧХ для чего определяем сопрягающие частоты:
, , 20 lg k=20 lg 200 =46
, wСР=70 c-1
w |
0 |
5 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
j(w) |
0 |
-46,5 |
-82,9 |
-130 |
-159 |
-178 |
-191,9 |
-202 |
-210 |
-217 |
Вывод: т.к. ЛАЧХ пересекает ось lg w позже , чем ЛФЧХ переходит значение -p , то замкнутая система неустойчива , т.е. запаса устойчивости нет ни по фазе ни по модулю
ЗАДАЧА 11. Замкнутая нелинейная система содержит:
- линейную часть с передаточной функцией:
- нелинейное звено со статической характеристикой:
Требуется определить параметры автоколебательного режима.
Составим характеристическое уравнение системы:
Замена p à jω
Разделяем вещественную и мнимую части:
→ — амплитуда авток. режима
ЗАДАЧА 12. Система описывается дифференциальным уравнением вида:
Построить фазовую траекторию и сделать вывод о характере колебаний.
Решение : , Разделим (2) на (1) : =>
, , , , b=c
Фазовые траектории соответствуют эллипсам (в зависимости от начальных условий) .
ЗАДАЧА 13. Определить спектральную плотность случайного сигнала при прохождении его через: - идеальное дифференцирующее звено с коэффициентом передачи k = 1 с; - реальное интегрирующее звено.
1) — идеальное диф. звено с коэф. передачи k = 1 c.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.