Задачу будем решать в частотной области.
на входе
на выходе
Неравенство Коши-Бениковского
После подстановки этого равенства получим:
При введении 2х порогов пространство разбивается на 3и области: , - область неопределённости.
Вероятность Л.Т.:
если
особенность 2х порогового критерия, что наблюдается явление случайной величиной.
-случайная величина, но - минимально возможное.
Синтез оптимальной процедуры точно
известного сигнала.
На основании статистического критерия можно получить оптимальную процедуру и на основании её построить схему, а затем определить высший предел помехоустойчивости.
Исходные данные:
- в канале действует аддитивный Гауссовский шум.
- задан вид модуляции.
- длительность сигнала одинакова и равна t (- техническая скорость).
Будем использовать критерий правдоподобия отношения, но т.к. длительность сигнала равна t, то ширина спектра и плотность распределения стремится к нулю.
Т.е. и в этом пространстве записать данное отношение к не является возможным т.к. плотность .
Т.О. в начале необходимо ограничить ширину спектра: и прейдём к n-мерному пространству.
меняться на и на выходе выявляется эффект обратной работы
Для решения проблемы обратной работы предложили использовать ОФМ
Схема преобразуется к виду:
При таком приёме эффект обратной работы исключается, но платим за это:
а)
б)
Т.О. , но
Т.О. плата за устранение обратной работы является снижение помехоустойчивости в 2 раза.
Обеспечивает более высокую помехоустойчивость.
Потенциальная помехоустойчивость при
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.