критерий Неймана-Пирсона
критерий Вальда
Эти критерии нашли наиболее широкое применение.
Чем больше норма разности, тем легче сигналы различить в пространстве.
С геометрической точки зрения видно, что задача многостатистическая.
Если норма
меньше, то
необходимо принимать гипотезу
, а если больше
чем
, то принимаем гипотезу![]()
(1)
(2)
Возведём левую и правую часть в квадрат, к подынтегральным выражениям применим формулу квадратов разности, после преобразований получаем:
(3) правило оптимальной
процедуры
где 
На основании полученной оптимальной процедуры можно обобщить структурную схему оптимального приёмника.

Наиболее широкое применение этот критерий нашёл в радиолокационных задачах.
Этот критерий так же является ассиметричным по отношению к начальным, в нём учитывается вероятность исхода, т.е. каждая ошибка неоднозначна.
Этот критерий схож с критерием минимального риска, где используется плата.
Считается крайне нежелательной ошибка типа ложной тревоги.
Рассмотрим на примере 2х альтернативной логики:


-вероятность ложной
тревоги.
если ![]()
Вероятность
выбирается из
тактических характеристик.
Критерий Вальда.
Суть состоит в выборе 2 порогов.


Критерий Котельникова.

Возникает вопрос, на основании чего ДМ должно принять одно
из этих решений:
.
Отсюда следует, что ДМ должно каким-либо способом для всех
возможных гипотез
должно просчитать
апостериорные вероятности.
Решающее устройство (ДМ) должно оценить эти характеристики однозначно связанные с этими апостериорными вероятностями и должно принять решение в пользу этой гипотезы, апостериорная вероятность которой максимальна и от сюда и название критерия:

Проанализируем (1) и распишем подробнее:
![]()
![]()
![]()
используя (1) запишем:
(3)
![]()
![]()




Соотношение сигнал/шум на выходе СФ.
СФ имеет структуру, которая согласуется со структурой сигнала.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.