Сети и системы радиосвязи и средства их информационной защиты: Методические указания к лабораторным работам, страница 10

9.  Объясните, как свойства гауссовского канала связи используются при моделировании процессов кодирования и декодирования.

10.   Опишите принцип блочного кодирования и декодирования, вид матрицы генератора систематического блочного кода, а также вид проверочной матрицы.

11.   Объясните особенности циклических кодов как разновидности блочных кодов.

Для подготовки ответов на вопросы использовать литературные источники [1], [2].

ЛАБОРАТОРНАЯ РАБОТА № 4

Исследование сверточного кодирования и декодирования

Цель работы: изучение наиболее распространенных видов сверточного помехоустойчивого кодирования и декодирования, использующихся в современных сетях и системах радиосвязи, вероятностей ошибок декодирования в различных условиях работы цифровых систем связи.

Лабораторная работа выполняется в среде Simulink, предназначенной для моделирования процессов, представленных в виде блок-схем, и входящей в состав пакета MatLab.

Обобщенная структура лабораторной работы представлена на рис.4.1.

Рис. 4.1. Обобщенная структура лабораторной работы

Основным анализатором, используемым в работе, является анализатор вероятности ошибки декодирования ErrorRateCalculation.

Выполнение лабораторной работы

1. Для выполнения лабораторной работы необходимо запустить MatLab  и открыть в нем файл лабораторной работы с именем work_4.mdl. Ознакомиться с составом экспериментального стенда, сравнить с рис. 4.1.

2. Исследовать помехоустойчивость сверточных кодов для симметричного двоичного канала.

Так как закодированное сообщение должно передаваться за то же время, что и исходное, то это приводит к необходимости пересчета отношения сигнал-шум аналогично лабораторной работе №3: на графиках необходимо указывать значение , а при формировании модели канала использовать , применив формулу (3.1) и данные таблицы 3.1.

В работе используется сверточный кодер двоичных данных ConvolutionEncoder, свойства которого задаются полиномом , с параметрами:

-  длина кодового ограничения,

 - кодовые векторы, часто задаваемые в восьмеричной форме.

Примеры набора параметров для сверточных кодеров приведены в таблице 4.1 [3].

Таблица 4.1

Скорость кодирования

Длина кодового ограничения

Кодовые векторы

1 /2

3

5

7

4

15

17

5

23

35

6

53

75

7

133

171

1/3

3

5

7

7

4

13

15

17

5

25

33

37

6

47

53

75

7

133

145

175

1 /4

3

5

7

7

7

4

13

15

15

15

5

25

33

33

33

6

53

53

53

53

7

135

145

145

145

1/5

3

7

7

7

5

5

4

17

17

13

15

15

5

37

27

33

25

35

6

75

71

73

65

57

7

175

131

135

135

147

Экспериментально получить значения вероятностей ошибки декодирования для сверточных кодов со скоростью кодирования  1/2, 1/3, 1/4, 1/5. Длина кодового ограничения  выбирается в зависимости от номера бригады:

Таблица 4.2

Номер бригады

1

2

3

4

5

3

4

5

6

7