ВВЕДЕНИЕ
Дидактический материал предназначен студентам всех специальностей заочного факультета ГУЦМиЗ, изучающих курс механики по программе для инженерно-технических специальностей.
Дидактический материал содержит краткое изложение теории по изучаемой теме, адаптированной к уровню обученности студентов-заочников, примеры решения типовых задач, вопросы и задания, аналогичные предлагаемым студентам на экзаменах, справочный материал.
Цель такого материала – помочь студенту-заочнику самостоятельно в сжатые сроки усвоить кинематическое описание поступательного и вращательного движений, используя метод аналогии; научиться решать численные и качественные задачи, разбираться в вопросах, связанных с размерностью физических величин.
Особое внимание уделяется решению качественных задач, как одному из приемов более глубокого и сознательного усвоения основ физики, необходимых при изучении специальных дисциплин. Они помогают понять смысл происходящих явлений природы, уяснить сущность физических законов и уточнить область их применения.
Дидактический материал может быть полезен студентам дневной формы обучения.
КИНЕМАТИКА
Часть физики, изучающую механическое движение, называют механикой. Под механическим движением понимают изменение с течением времени взаимного расположения тел или их частей.
Кинематика – первый раздел механики, она изучает законы движения тел, не интересуясь причинами, вызывающими это движение.
1. Материальная точка. Система отсчета. Траектория.
Путь. Вектор перемещения
Простейшая модель кинематики - материальная точка. Это тело, размерами которого в данной задаче можно пренебречь. Любое тело можно представить как совокупность материальных точек.
Чтобы математически описать движение тела, необходимо определиться с системой отсчета. Система отсчета (СО) состоит из тела отсчета и связанных с ним системы координат и часов. Если в условии задачи нет специальных указаний, считается, что система координат связана с поверхностью Земли. В качестве системы координат чаще всего используется декартова система.
Пусть требуется описать движение материальной точки в декартовой системе координат ХУZ (рис.1). В некоторый момент времени t1 точка находится в положении А. Положение точки в пространстве можно характеризовать радиусом - вектором r1, проведенным из начала координат в положение А, и координатами x1, y1, z1. Здесь и далее векторные величины обозначены жирным курсивом. К моменту времени t2 = t1 + Δ t материальная точка переместится в положение В с радиус вектором r2 и координатами x2, y2, z2.
Рис.1
Траекторией движения называется кривая в пространстве, по которой движется тело. По виду траектории различают прямолинейное, криволинейное движения и движение по окружности.
Длина пути (или путь) - длина участка АВ, измеренная по траектории движения, обозначается через Δs (или s). Путь в международной системе единиц (СИ) измеряется в метрах (м).
Вектор перемещения материальной точки Δr представляет собой разность векторов r2 и r1 , т.е.
Δr= r2 -r1.
Модуль этого вектора, называемый перемещением, является кратчайшим расстоянием между положениями А и В (начальным и конечным) движущейся точки. Очевидно, что Δs ≥ Δr, причем равенство выполняется при прямолинейном движении.
При движении материальной точки значение пройденного пути, радиуса-вектора и его координат меняется со временем. Кинематическими уравнениями движения (в дальнейшем уравнениями движения) называют их зависимости от времени, т.е. уравнения вида
s=s(t), r= r(t), x=х(t), y=у(t), z=z(t).
Если для движущегося тела известно такое уравнение, то в любой момент времени можно найти скорость его движения, ускорение и т.д., в чем далее убедимся.
Любое движение тела можно представить как совокупность поступательного и вращательного движений.
2. Кинематика поступательного движения
Поступательным называют такое движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной самой себе.
Скорость характеризует быстроту движения и направление движения.
Средней скоростью движения в интервале времени Δtназывается величина
(1)
где - Ds отрезок пути, пройденный телом за время за время Dt.
Мгновенной скоростью движения (скорость в данный момент времени) называют величину, модуль которой определяется первой производной от пути по времени
(2)
Скорость - векторная величина. Вектор мгновенной скорости всегда направлен по касательной к траектории движения (рис.2). Единица измерения скорости – м/с.
Значение скорости зависит от выбора системы отсчета. Если человек сидит в вагоне поезда, он вместе с поездом движется относительно СО, связанной с землей, но покоится относительно СО, связанной с вагоном. Если человек ходит по вагону со скоростью u, то его скорость относительно СО «земля» uз зависит от направления движения. Вдоль движения поезда uз = uпоезда + u, против - uз = uпоезда - u.
Проекции вектора скорости на оси координат υх,υу,υz определяются как первые производные от соответствующих координат по времени (рис. 2):
Рис.2.
Если известны проекции скорости на оси координат, модуль скорости можно определить по теореме Пифагора:
(3)
Равномерным называют движение с постоянной скоростью (υ = const). Если при этом не меняется направление вектора скорости v, то движение будет равномерным прямолинейным.
Ускорение - физическая величина, характеризующая быстроту изменения скорости по величине и направлению Среднее ускорение определяется как
(4)
где Δυ - изменение скорости за отрезок времени Δt.
Вектор мгновенного ускорения определяется как производная от вектора скорости v по времени:
(5)
Поскольку при криволинейном движении скорость может изменяться как по величине, так и по направлению, принято разлагать вектор ускорения на две взаимно перпендикулярные составляющие
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.