Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.
Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.
Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.
Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.
Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.
Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.
§. 5. Приведение уравнений линий и поверхностей
второго порядка к каноническому виду
Известно, что для любой квадратичной формы на конечном действительном евклидовом пространстве в этом пространстве существует ортонормированный базис, в котором рассматриваемая квадратичная форма имеет канонический вид. Используя этот факт, любую линию или поверхность второго порядка можно привести к каноническому виду по следующему плану.
1. Для квадратичной части уравнения (т. е. квадратичной формы) находим канонический вид и ортогональное преобразование переменных, приводящее квадратичную форму к этому каноническому виду.
2. Подставляем выражение старых переменных через новые в исходное уравнение. При этом квадратичная часть переходит в известный нам канонический вид, в котором коэффициенты при квадратах совпадают с собственными значениями ее матрицы, свободный член не меняется, линейная часть преобразуется непосредственно.
3. Получили уравнение, не содержащее произведений переменных. С помощью преобразования параллельного переноса избавляемся от лишних слагаемых первых степеней и тем самым окончательно приводим уравнение к каноническому виду.
Если линия или поверхность второго порядка имеет центр симметрии, то решение задачи можно существенно упростить, поменяв местами 1-й и третий пункты, а второй тогда совсем исчезает.
Для того чтобы точка была центром симметрии поверхности второго порядка , необходимо и достаточно, чтобы координаты этой точки удовлетворяли системе линейных уравнений
(5. 3)
Если с помощью параллельного переноса поместить начало координат в центр симметрии поверхности второго порядка, то при этом: квадратичная часть ее уравнения не изменится; слагаемые первой степени пропадут; свободный член нового уравнения можно найти по формуле
. (5.4)
Аналогичные утверждения справедливы и для линий второго порядка (подробно обоснование см., например, в []).
Пример 1. Определить вид линии второго порядка, приведя ее уравнение к каноническому виду, и нарисовать эту линию, если ее уравнение имеет вид
. (5.5)
►В первую очередь проверим, имеет ли эта линия центр симметрии. Составляем систему линейных уравнений (5.3)
из которой находим: . Поместим с помощью параллельного переноса начало координат в точку (если в задаче используются несколько систем координат, то обязательно надо указывать, в какой именно из них вы даете координаты точки). По формуле (5.4) (подставляем координаты в левую часть (5.5)) находим . После преобразования параллельного переноса уравнение линии примет вид .
Теперь приведем к каноническому виду квадратичную часть уравнения (т. е. квадратичную форму) с помощью ортогонального преобразования переменных. Для этого записываем матрицу этой квадратичной формы и находим ее собственные значения:
, , .
Для нахождения первого собственного вектора решаем систему линейных уравнений с матрицей при : , . Чтобы найти второй собственный вектор нет необходимости решать вторую систему. Достаточно вспомнить, что он ортогонален вектору в силу симметричности матрицы А и что его координаты можно получить, как и в аналитической геометрии, переставив местами координаты вектора и в одной из них поменяв знак. Итак, . Применим ортогональное преобразование, в результате которого оси новой системы координат будут направлены по собственным векторам. После этого уравнение примет вид (коэффициенты при квадратах совпадают с найденными собственными значениями) , или , которое задает гиперболу с полуосями 1 и 3 и осью в качестве действительной.
Приступаем к рисованию. На одном рисунке изображаем и старую систему координат, и новую. Намечаем новое начало координат – точку . От этой точки откладываем собственные векторы и , которые задают направление новых осей. В полученной системе координат рисуем полученную гиперболу (рис.5.1). ◄
Замечания. 1. При таком способе решения нет необходимости выписывать ни преобразование параллельного переноса, ни ортогональное преобразование, т. к. мы и без непосредственной подстановки их в уравнение знаем, как оно преобразуется. Нет необходимости даже собственные векторы нормировать: ортогональное преобразование не нужно, а векторы с целочисленными координатами легче рисовать. Именно поэтому задачу приведения линии второго порядка к каноническому виду в том случае, когда эта линия имеет центр симметрии, сложной не назовешь.
Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.
Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.
Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.
Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.
Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.
Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.