Методы измерения дальности. Импульсный метод определения дальности. Частотный метод измерения дальности. Фазовые методы измерения дальности

Страницы работы

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.

Содержание работы

МЕТОДЫ ИЗМЕРЕНИЯ  ДАЛЬНОСТИ

Для измерения дальности до отражающих объектов используют три метода: импульсный, частотный и фазовый. В основе  всех трех методов лежат явления, обусловленные конечной скоростью распространения радиоволн в пространстве.  Вследствие ряда преимуществ наибольшее распространение в радиолокации получил импульсный метод измерения дальности.

             ИМПУЛЬСНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ

Определение дальности в импульсных дальномерах сводится к измерению времени запаздывания отраженного от цели импульса относительно зондирующего, так как

Подпись:

Это основное соотношение для радиодальнометрии. Запаздыванию  t3 = 1 мксек соответствует дальность R=150м. Чтобы получить высокую точность определения R, нужно точно измерять tз. Структура импульсного дальномера представлена на рис. 3.1, а соответствующие ей временные диаграммы — на рис. 3.2.

Отраженные сигналы в простейшем случае, когда целью является одиночный объект малых размеров, представляют собой   высокочастотные  импульсы   весьма малой интенсивности приблизительно той же длительности, что и излучаемые импульсы.

Импульсный радиолокатор состоит из синхронизатора, передатчика, приемника и оконечного устройства.

Оконечное устройство является весьма важным элементом РЛС. В оконечное устройство, в общем случае, входит также система измерения угловых координат, связанная с антенной синхронной передачей угла поворота антенны. Оконечное устройство должно решать две задачи: во-первых, выделять сигнал на фоне помех с сохранением всех полезных параметров и, во-вторых, по параметрам выделенного сигнала измерять координаты цели и характеристики ее движения. В зависимости от получателя радиолокационной информации могут быть использованы различные типы оконечных устройств.

Если получателем радиолокационной информации является оператор, то оконечным устройством современной РЛС, как правило, служит электронно-лучевой индикатор или жидкокристаллический дисплей. Здесь радиолокационные сигналы преобразуются в видимое на экране изображение.

Если получателем радиолокационной информации является, вычислительное устройство или непосредственно исполнительный механизм непрерывного действия, то оконечным устройством РЛС должна быть система автоматического сопровождения цели. Последняя выдает данные о дальности цели обычно в виде напряжения, а данные об угловых координатах — в виде углов поворота осей антенны.

Если информация с РЛС поступает на ЦВМ, ее необходимо подавать в виде чисел двоичного кода. Оконечное устройство, обеспечивающее преобразование радиолокационной информации в двоичный код, получило название устройства инструментального съема данных.

Рассмотрим работу импульсного дальномера, в качестве оконечного устройства которого используется электроннолучевой индикатор. Синхронизатор вырабатывает управляющие импульсы, следующие с определенной частотой повторения, с помощью которых координируется во времени работа всех элементов РЛС. Импульсы синхронизатора запускают передатчик, который состоит из модулятора и высокочастотного генератора. На выходе передатчика вырабатываются импульсы высокочастотных колебаний, которые через антенный переключатель АП поступают в антенну и излучаются.

Большинство импульсных РЛС для излучения и приема сигналов используют одну и ту же антенну, которая во время излучения подключается к передатчику и отключается от приемника, а во время приема сигналов подключается к приемнику и отключается от передатчика. Переключение антенны осуществляется АП, действие которого основано на использовании отрезков четвертьволновых линий и газовых разрядников.

Подпись:

Отраженные от цели сигналы через антенну и АП поступают в приемник, где усиливаются до необходимой величины и преобразуются в видеоимпульсы. Так как АП не может осуществить идеального отключения приемника, на его вход просачиваются значительно ослабленные зондирующие импульсы передатчика. По амплитуде они значительно превышают отраженные импульсы. В РЛС находят применение два вида индикаторов: индикаторы с амплитудной отметкой и индикаторы с яркостной отметкой.  

Рассмотрим индикатор с амплитудной отметкой. Для создания развертки по дальности на горизонтально отклоняющие пластины ЭЛТ подается напряжение от генератора развертки, который запускается импульсом синхронизатора одновременно с передатчиком. Если напряжение развертки линейно, то светящееся пятно на индикаторе перемещается от одного края экрана трубки к другому с постоянной скоростью vр. Импульсы с выхода приемника, поступающие на вертикально отклоняющие пластины индикатора, вызывают отклонение пятна по вертикали. Первый выброс на экране создается просачивающимся через АП импульсом передатчика, все остальные выбросы — сигналами, отраженными от объектов (рис. 3.3). Так как величина перемещения пятна по экрану является мерой времени, то расстояние l между передним фронтом импульса передатчика и передним фронтом отраженного сигнала характеризует дальность до объекта. Действительно,

l = vptз = vp2R/c =MR,      (1)

где     vр — скорость  движения   пятна по экрану трубки (скорость развертки);

tз= 2R/c - время задержки отраженного сигнала относительно зондирующего;

M= 2vpR/c - масштаб линейной развертки.

Отсчет дальности в простейшем случае производится либо по механической шкале, наложенной на экран трубки, либо по электронной шкале, созданной в плоскости временной развертки. Основное достоинство метода отсчета по механической шкале заключается в его простоте. Недостатком его является малая точность отсчета. Применяется в станциях дальнего обнаружения и в других устройствах, где не требуется высокая точность.

Похожие материалы

Информация о работе

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.