Практика использования соединений с натягом показывает, что небольшие пластические деформации на внутренней поверхности втулки не снижают в целом надежной работы соединения.
Что касается расчетного давления , то оно должно быть принято наибольшим, из возможных значений, реализуемых для данной посадки и данного диапазона изменения температуры окружающей среды. Это давление соответствует наибольшему из возможных натягов:
(17)
Что касается прочности охватываемой детали (вала), то она может быть оценена лишь на основе комплексного учета всех нагрузок, действующих на эту деталь, в том числе со стороны втулки. Однако эта задача является чрезвычайно сложной. В связи с этим влияние насаженной на вал втулки в расчетной практике учитывают лишь косвенно, путем введения в расчеты эффективных коэффициентов концентрации напряжения . Так, например, рассчитывают на кручение и изгиб валы с посаженными на них с натягом зубчатыми колесами, шкивами ременных передач, муфтами и т.д.
Численное значение эффективного коэффициента концентрации зависит от многих факторов, в том числе от механических характеристик прочности материала вала, конструкции соединения, размеров деталей соединения посадочного давления, характера изменения напряжений в сечениях вала. Его численные значения могут доходить до 2 и выше.
Отметим, что у конструкторов имеются большие возможности снижения эффекта концентрации напряжения, в первую очередь, за счет выбора правильной формы вала и втулки (рис. 8).
Рис. 8. Примеры конструктивного улучшения
формы деталей соединений с натягом
Пример 1.В конструкции, представленной на рис. 9 а, бронзовая втулка 1 установлена в стальной корпус 2 опоры подшипника по посадке Н7/t6. Температура сборки . Проанализируйте, допустимо ли использовать такую конструкцию опоры при температуре окружающей среды , если минимально допустимое давление на посадочных поверхностях корпуса и втулки (при меньших давлениях возможно смещение втулки по отношению к корпусу под действием сил со стороны вала). Параметры шероховатости поверхностей – . Необходимые для расчета константы материала:
Бронза – модуль упругости , коэффициент Пуассона , коэффициент линейного расширения ;
Сталь – модуль упругости , коэффициент Пуассона , коэффициент линейного расширения .
Решение.
1. Коэффициенты радиальной податливости втулки и корпуса подшипника находим, моделируя (см. рис. 9) охватывающую деталь (корпус) в виде цилиндра с внутренним диаметром и наружным диаметром :
,
.
Рис. 9. Конструкция соединения с натягом (а) и схема
к определению натяга посадки (б)
2. Минимально допускаемый натяг, исходя из обеспечения прочности соединения:
.
3. Минимальное значение (возможного по условиям изготовления) натяга деталей соединения при заданной посадке H7/t6 (рис. 9б) с учетом влияния температуры окружающей среды, а также обмятия и среза микронеровностей в процессе запрессовки:
4. Сопоставляя значения и , приходим к заключению, что минимальный возможный натяг деталей соединения меньше минимального допустимого натяга, т.е. или, что то же самое, .
Если допустить, что минимальный натяг посадки H7/t6 для номинального диаметра равен (см. табл. 1), то с вероятностью 0,9986 условие () выполняется, поскольку в этом случае , т.е. на 7 мкм больше ().
Заключение. При использовании посадки H7/t6 условие прочности соединения не выполняется со 100-процентной вероятностью, но определенно выполняется с вероятностью 99,86%.
Пример 2. Проверить работоспособность соединения венца червячного колеса 2 со ступицей 1 (рис. 10), а также определить необходимую силу запрессовки при следующих исходных данных:
допускаемый коэффициент запаса по сцеплению ;
передаваемый вращающий момент ,
осевая составляющая усилия в зацеплении ;
Рис. 10. Конструкция соединения с натягом (а) и схема
к определению предельных натягов посадки
материал ступицы – сталь 40Л (модуль упругости , коэффициент линейного расширения , коэффициент Пуассона ); материал венца – бронза Бр 01ОФ1 (модуль упругости , коэффициент линейного расширения , коэффициент Пуассона , предел текучести ); параметры шероховатости поверхностей – ; сборка венца со ступицей осуществлена способом запрессовки при температуре ; реализуемый на контактирующих поверхностях венца и ступицы коэффициент трения лежит в пределах ; диапазон изменения рабочей температуры червячного колеса , температура хранения червячного колеса .
Решение.
1. Значения минимального и максимального натягов посадки H7/и8 для номинального диаметра в соответствии со схемой рис. 10 б равны: , .
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.