Переход к комплексным числам ?
Можно
Но удобнее ввести комплексный ток вида - так, что реальный ток
- здесь - комплексная амплитуда (содержит и амплитуду, и фазу)
- аналогично комплексная амплитуда напряжения
Говорят, что комплексные амплитуды символизируют
------------------------------------------------------------------------------------------------------
- где
Введем
,
,
Подставляя в уравнение :
Операция взятия мнимой части коммутативна с вещественными операторами Þ
- но под операторами - комплексные экспоненты, соответствующие в комплексной плоскости векторам, вращающимся с частотой :
И т.к. уравнение справедливо при любом , то равны не только мнимые части, но и сами вектора. Т.е. :
, или
- т.е.
- закон Ома в комплексной форме - , где
- комплексное сопротивление ;
вообще , где
- активная составляющая сопротивления ,
- реактивная составляющая
- модуль полного сопротивления
- фазовый сдвиг
Комплексная амплитуда тока будет (по правилу деления комплексных чисел) :
- далее переходя к вещественной форме (домножая на и беря ) :
,
- причем эти соотношения можно получить прямым решением интегро-дифференциального уравнения
------------------------------------------------------------------------------------------------------
Аналогично вводится комплексная проводимость :
Обратно,
------------------------------------------------------------------------------------------------------
Ранее мы нормировали на - на амплитудные значения;
но часто комплексные амплитуды нормируют на действующие значения - т.е. ,
В этом случае можно ввести "комплексную" мощность
- где - разность фаз тока и напряжения ; тогда :
- активная мощность в цепи
- реактивная мощность
- полная (кажущаяся) мощность
------------------------------------------------------------------------------------------------------
Для пояснения действия участков цепей и для расчета простейших схем применяют метод векторных диаграмм .
------------------------------------------------------------------------------------------------------
Обычно - применяют т.н. символический метод - заменяют в рассчитываемой линейной схеме индуктивности и емкости соответствующими комплексными сопротивлениями и далее рассчитывают схему, решая систему линейных алгебраических уравнений, которую составляют на основе законов Ома и Кирхгофа :
------------------------------------------------------------------------------------------------------
Пример : расчет пускового тока люминесцентной лампы :
------------------------------------------------------------------------------------------------------
На самом деле : почему можно заменять вещественные синусоидальные токи и напряжения комплексными экспонентами ?
- т.к. система предполагается линейной, и при ее прохождении вещественные сигналы остаются вещественными, мнимые - мнимыми (т.к. все операторы, описывающее действие системы на сигналы, - вещественные) :
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.