 Аннотация
Аннотация
2. Состояние упругости. Закон Гука………………………………………..стр. 6
3. Решение системы линейных уравнений с
ленточной матрицей коэффициентов……………………………..……стр. 9
4. Подпрограмма GELB……………………………………………..………стр. 9
5. Подпрограмма DGELB…………………………………………………...стр. 12
6. Список использованной литературы……………………………………стр. 15
Осесимметрические задачи теории упругости
Важный класс задач теории упругости включает задачи, в которых рассматрива-ются тела вращения при осесимметричном нагружении. Хотя такие тела и явля-ются трехмерными, но ни их геометрия, ни условия нагружения не зависят от ази-мутальной координаты. Поэтому при решении может быть использован тот же подход, что и к двумерным задачам. Осесимметричный треугольный элемент, по-лученный вращением треугольного симплекс-элемента, образует треугольный тор (см. рис.1, аппроксимация 1).
 Нанести на рисунок
оси rzq
Нанести на рисунок
оси rzq
  
Необходимо записать несколько соотношений, потому что удобнее использовать
компоненты тензоров напряжения и  деформаций в
цилиндрической системе координат. Здесь представлены основные величины:
компоненты вектора напряжений
деформаций в
цилиндрической системе координат. Здесь представлены основные величины:
компоненты вектора напряжений


компоненты вектора деформаций

Соотношения связи между деформациями и перемещениями имеют вид

Предполагая материал изотропным, запишем матрицу упругих характеристик



и вектор начальной деформации, вызванной тепловым воздействием,

Поле перемещений внутри элемента аппроксимируются соотношениями, где функции формы выражаются через r и z, а перемещения обозначаются буквами u и w.
ЭТО ИЗОБРАЖЕНИЕ ПРЕОБРАЗОВАТЬ в РИСУНОК ! ***.bmp
Z




















 
                  
sxz
tzr
srr
trz sqq
q
r
рис.1.Компоненты напряжений в осесимметрических задачах.

Дифференцируя это выражение и используя соотношение связи между деформациями и перемещениями ,получаем

Матрица
коэффициентов соответствует, так как   .
.
Вычисление
интегралов, определяющих матрицы элементов, несколько сложнее, чем это было в
одномерных, двумерных и трехмерных задачах. Матрица  содержит
теперь коэффициенты, являющиеся функциями координат, и не может быть вынесена
за знак интеграла.
            содержит
теперь коэффициенты, являющиеся функциями координат, и не может быть вынесена
за знак интеграла.
Матрицу
жесткости можно определить, вычислив  по значениям R  и Z  в
центре элемента. Такой способ позволяет выносить матрицу
  по значениям R  и Z  в
центре элемента. Такой способ позволяет выносить матрицу   из-под интеграла:
   из-под интеграла:
     
                                           

Учитывая, что объём элемента дается формулой
V=2
 где
A-площадь поперечного сечения элемента, получаем для  окончательное выражение:
    окончательное выражение: 
                                              

Черта
над  указывает на приближенное значение.
Формула приближенная, но она дает приемлемые результаты, если разбиение на
элементы согласуется с ожидаемым распределением  напряжений ,т.е. в области с
большими значениями
   указывает на приближенное значение.
Формула приближенная, но она дает приемлемые результаты, если разбиение на
элементы согласуется с ожидаемым распределением  напряжений ,т.е. в области с
большими значениями
градиентов напряжений используются малые элементы и т.д.
Вектор-столбец,
связанный с тепловым расширением, определяется точно так же ,поскольку под
интегралом стоит матрица  . Приближенное
соотношение получается вычислением
. Приближенное
соотношение получается вычислением  по значениям
 по значениям  и
 и  для
данного элемента. Приведем окончательный результат:
   для
данного элемента. Приведем окончательный результат:

Объемный интеграл от объемных сил может быть проинтегрирован точно с использованием L-координат или приближенного метода. Этот интеграл выражается через L-координаты следующим образом:
                                     


где
dV   заменено на   радиальное
расстояние r также может быть выражено через L-координаты:
   радиальное
расстояние r также может быть выражено через L-координаты:
 (*)
         (*)
подстановка
этого выражения в предыдущее приводит к произведению типа   или
      или    .
Окончательно получаем
.
Окончательно получаем

Соотношение показывает, что компоненты объемной силы R или Z не распределяются в данном случае поровну между тремя узлами элемента. Большая часть приходится на узлы, наиболее удаленные от оси вращения.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.