Особенности распространения радиоволн. Основные определения и электрические параметры антенн, страница 10

С помощью множителя ослабления напряженность поля, создаваемая передающей антенной в реальных условиях на расстоянии r, может быть выражена следующим выражением:

Е= ECB ·F =G/r.                                         (18)

Приемная антенна преобразует падающую на нее электромагнитную волну в электрический сигнал. Количественно это характеризуют эффективной площадью (Sэфф) антенны. Эффективная площадь антенны соответствует той площади фронта волны, из которой поглощается вся содержащаяся в ней энергия. С КНД эта площадь связана соотношением

Sэфф =Dl2/4π.                                                       (19)

Изложенное выше позволяет написать уравнение радиопередачи, которое связывает параметры аппаратуры связи и антенн и определяет уровень сигнала на трассе: при мощности передатчика P1мощность Р2 сигнала на входе приемника будет равна

Р2 = P1··h1··h2··G1··G2 ·(l·F/4πr)2,                               где h1и h2 — КПД передающего и приемного фидеров; G1и G2— коэффициенты усиления передающей и приемной антенн; l — длина волны излучения. Множитель, заключенный в скобки, определяет основные потери при распространении радиоволн (основные потери передачи).

Последнее выражение предполагает, что антенна согласована с фидером, а фидер с приемником (передатчиком). Кроме этого, антенна согласована по поляризации с полем сигнала. В дальнейшем эти вопросы будут рассмотрены более детально.

Уравнение радиопередачи позволяет произвести расчет радиолинии. Например, зная необходимую мощность на входе приемника (телевизора), мощность передатчика, параметры передающей антенны и питающего ее фидера, затухание на трассе, можно определить необходимый коэффициент усиления приемной антенны, что позволит затем выбрать тип антенны и определить ее размеры.

РАСПРОСТРАНЕНИЕ РАДИОВОЛН

ВДОЛЬ ПОВЕРХНОСТИ ЗЕМЛИ

При распространении радиоволн в свободном пространстве влияние его различных областей на процесс передачи электромагнитной энергии различно. На распространение радиоволн между пунктами передачи и приема основное влияние оказывает область пространства, примыкающая к линии кратчайшего расстояния между ними.


Рис. 1. Образование  зон Френеля

С помощью принципа Гюйгенса—Френеля определена область, существенная для распространения радиоволн. Наглядно представить ее можно, воспользовавшись понятием зон Френеля. На рис.1 показана схематично трасса длиной r между передающей А и приемной Б антеннами. Если линию АБ пересечь  плоской   поверхностью   S.   перпендикулярной   АБ, то   на  этой поверхности можно выделить кольцевые участки 1, 2, 3 и т. д., на которых фаза поля будет отличаться не более чем на 180°. Эти участки и есть зоны Френеля. В точке приема Б соседние зоны Френеля создают противофазные поля. Если перемещать плоскость S вдоль линии АБ, то зоны Френеля опишут поверхности эллипсоидов вращения, образуя пространственные зоны Френеля.

Вследствие взаимной компенсации противофазных полей соседних зон Френеля, в точке Б остается действие, эквивалентное лишь действию волн, проходящих ,в пределах 1/3 первой зоны Френеля, на участке с радиусом

рс = .(20)

Эта величина имеет важное значение, так как она определяет размеры области, существенной для распространения радиоволн при наличии на трассе препятствий, например в виде полуплоскости.

Как видно, рс, а с  ним и площадь существенной для распространения радиоволн области зависят от длины волны и от того места на трассе, которое она занимает. Максимальный радиус получается на середине трассы

рс max = .                                                     (21)

Для небольших расстояний rкм £ 20 поверхность земли можно считать плоской. Когда высоты расположения антенн оказываются небольшими (порядка длины волны) излучаемые передающей антенной волны поглощаются на всем пути. Потери энергии частично восполняются ее притоком из верхних участков фронта волны.