КРАТНЫЕ ИНТЕГРАЛЫ.
Двойные интегралы.
Для ф-ии двух переменных Z=F(x,y)
можно построить интеграл вида: где D-некоторая ограниченная область
заданная на плоскости XoY. ![]()
Восполним произвольное
разбиение области D на элементарные части:![]()
В каждой элементарной площади
разбиения
выбираем точку с координатами (xk;yk)
и вычисляем значения ф-ии в этой точке. ![]()
Затем составляем сумму вида:
![]()
которая называется интегральной суммой заданной ф-ии Z=F(x,y) на области D.
Если неограниченно
увеличивать число разбиений области D на элементарные площадки, то в
случае существования придела интегральной суммы при
,получаем
двойной интеграл:![]()
Исходя из этого определения можно вычислять массу пластин объём цилиндров через двойной интеграл.
Если задана плотность
распределения массы по пластине D как ф-ия F(x,y)>=0, то масса пластины: ![]()
Если задано тело вида
![]()
Если облать D задана в декартовых координатах, то элемент площади dS
будет вычисляться по ф-ле: ![]()
И тогда двойной интеграл в декартовых координатах:
![]()
Свойства двойного интеграла.
1.
4.Для двойного интеграла справедлива следующая оценка:

5. Для двойного интеграла справедлива теорема о среднем
значении ф-ии, т.е. существует некоторая точка
что значение ф-ии в этой точке находится как отношение
где двойной интеграл:
дает нам площадь области D, т.е.
![]()
Расстановка пределов в двойном интеграле.
1.Интеграл по прямоугольной области.
Прямоугольная область D
задаётся неравенствами: ![]()

И тогда двойной интеграл по области D:
2.
Если область D является правильной в направлении оси Oy,
т.е. в вертикальном направлении имеет только одну точку выхода и одну точку
входа, то она (область) задается неравенствами:
![]()
![]()

3. Если область D является
правильной в направлении оси Ox, т.е. имеет вид: ![]()

Замечание: Если область D не является правильной, то вертикальными или горизонтальными прямыми разбиваем ее на правильные части, и затем интегрируем по каждой получившейся части.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.