Передаточную функцию
звена (системы автоматического управления)
можно
преобразовать, разложив на множители полиномы ее числителя и знаменателя.
Конечно, если известны корни уравнений
(нули)
и
(полюса).
.
Если в передаточной
функции произвести замену
, то
получаем
, называемое частотной
характеристикой звена (частотный , комплексный коэффициент передачи звена, АФХ).
Общая фаза выходного сигнала звена будет складываться из частичных фаз, определяемых каждым двучленом числителя и знаменателя. Об этом будет более подробно в соответствующем разделе ниже.
Корни полиномов
числителя и знаменателя
можно
изобразить на плоскости.
Комплексная плоскость
корней
и
:

Отсюда:
1. Корень
расположен в правой
полуплоскости, то есть ReSe>0 .
2. Корень
расположен в левой
полуплоскости, то есть ReSk<0 .
3. Углы наклона векторов
и
таковы, что jk<je, причем
,
.
Звено, у которого все корни (полюса и нули) расположены в левой полуплоскости (являются левыми) называется минимально фазовым звеном.
Если хотя бы один из корней звена расположен справа, то такое звено - не минимально фазовое звено.
У минимально фазовых звеньев существует однозначная зависимость между их частотными характеристиками.
То есть, располагая одной частотной характеристикой, можно построить остальные. Другими словами, в любой частотной характеристике заключена вся информация о поведении звена.
Неустойчивые звенья - всегда не минимально фазовые.
Все многообразие звеньев может быть по математическому описанию представлено лишь несколькими характерными (типовыми) звеньями.
Минимально фазовые звенья:
1. Идеальное усилительное звено (пропорциональное безинерционное, усилительное, звено нулевого порядка);
2. Реальное усилительное звено (апериодическое, инерционное первого порядка);
3. Идеальное дифференцирующее звено;
4. Реальное дифференцирующее звено;
5. Идеальное интегрирующее звено (интегратор);
6. Идеальное форсирующее звено;
7. Звенья второго порядка:
· Апериодическое (вообще-то это комбинация двух апериодических звеньев первого порядка);
· Колебательное;
· Консервативное.
Не минимально фазовые звенья:
1. Звено чистого запаздывания (особое звено с неограниченным изменением фазы);
2. Квазиапериодическое звено;
3. Квазиколебательное звено.

Это делитель напряжения, реостат - идеальное звено, если пренебречь его индуктивностью.
Получим частотные
характеристики идеального усилительного звена. Заменяем в передаточной функции
:
;
Тогда ВЧХ и МЧХ звена будут
определяться как
;
;
Фазо-частотная характеристика
ФЧХ звена:
;
Амплитудо-частотная
характеристика АЧХ:
;
Логарифмическая амплитудная (амплитудо-частотная)
характеристика ЛАХ звена:
.
Переходная характеристика
ℒ
.
Весовая функция (импульсная
переходная характеристика)
.
Все характеристики идеального усилительного звена изображены на рисунках:

В электромеханических системах типичным примером идеального усилительного (безинерционного) звена является датчик – преобразователь скорости вращения в напряжение, – тахогенератор.
Математические модели данного звена имеют вид:
дифференциальное уравнение:
; соответствующая ему
передаточная функция:
;
частотные характеристики:
-
АФЧХ;
-
ВЧХ;
- МЧХ; причем
,
.
Следовательно,
(АФЧХ) располагается в
четвертом квадранте координатной плоскости. Кроме того
(выполнили деление). Если
подставить
в
, то получим
, откуда после преобразований:
;
Þ
;
Þ
.
Имеем окружность радиусом
, сдвинутую на
вправо по оси абсцисс.
Можно утверждать, что АФЧХ расположена, как показано на рис.:

Амплитудо-частотная
характеристика реального усилительного звена имеет вид: ![]()
Фазо-частотная характеристика:
, причем
,
.
На графиках представлены все полученные зависимости:

Логарифмическая амплитудо-частотная характеристика (ЛАХ):
.
Для ее построения выполним исследования. а) Зона низкой частоты. Н.Ч.
,
.
б) Зона высокой частоты. В.Ч.
,
;
;
Наклон характеристики в области
высоких частот
.

Изображенная на рис. логарифмическая характеристика в виде кусочно-ломаной линии
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.