Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems, страница 10


The in situ impedance spectroscopy was used to study the interface behavior of the LiFePO4 cathode with IL and compared to the standard electrolyte. It was found that interfacial “Ri” decreased when LiFePO4–FePO4 phases coexist (90%>DoD>10%). On the other hand, the diffusion resistance “Rd” was found higher when the iron phosphate was present in the monophase state; LiFePO4 (0% DoD) or FePO4 (100% DoD).

When a small amount of polymer (1%) is mixed with IL, the interfacial resistance improves by forming a stable SEI at the electrodes. By increasing the polymer content at 5%, Ri and Rd increase, independently of the state of discharge. In all cases, Li-cells have shown a good cycling resulting from the stability of the permeable (to Li+ ions) layer formed at the electrode surfaces. For the full Li-ion cell, a low first-coulombic efficiency was found at 68.4%, related to the low first CE of the graphite anode. The rate capability is good until 2 C rate, and above this rate the capacity drops to 54% of the rated capacity. This behavior is probably associated with the high population of ions causing some ion pairing [52, 53] which limits their freedom of mobility and prevents them from the full contribution to conduction in the battery. Further improvement should be focused to improve the CE of the anode side and technical optimization is needed; such as pores control in the electrodes and the separator, improving the wetting process in the electrodes, and the attainment of high rate performance before this technology is considered for commercialization.

Acknowledgment      This         work        was          financially               supported by Hydro-Québec.


1.  Tanaka T, Ohta K, Arai N (2001) J Power Sources 97–98:2. doi:10.1016/S0378-7753(01)00502-X

2.  March RA, Vukson S, Sarampudi S, Ratnakumar BV, Smart MC,Manzo M et al (2001) J Power Sources 97–98:25–27. doi:10.1016/S0378-7753(01)00584-5

3.  Takamura T (2002) Solid State Ion 152–153:19. doi:10.1016/ S0167-2738(02)00325-9

4.  Zaghib K, Charest P, Guerfi A, Shim J, Perrier M, Striebel K(2004) J Power Sources 134:124. doi:10.1016/j.jpowsour. 2004.02.020

5.  PNGV FreedomCar manual, T.Q. Duong. J Power Sources

89:244. doi:10.1016/S0378-7753(00)00439-0

6.  Terada N, Yanagi T, Arai S, Yoshikawa M, Ohta K, Nakajima N etal (2001) J Power Sources 100:80–92. doi:10.1016/S0378-7753 (01)00885-0

7.  Nanis L, Bockris JO’M (1963) J Phys Chem 67:2865. doi:10.1021/j100806a519

8.  Bockris JO’M, Richards SR (1965) J Phys Chem 69:671

9.  Emi T, Bockris JO’M (1970) J Phys Chem 74:159. doi:10.1021/ j100696a029

10.  Fürth R (1941) Proc Camb Philos Soc 37:252

11.  Huddleston JG, Willaur HD, Swatloski RP, Visser AE, Rogers RD(1998) Chem Commun (Camb) 1765. doi:10.1039/a803999b

12.  Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Nature 399:289. doi:10.1038/19887

13.  Sato T, Masuda G, Takgi K (2004) Electrochim Acta 49:3603. doi:10.1016/j.electacta.2004.03.030

14.  Kim YJ, Matsuzawa Y, Ozaki S, Park KC, Kim C, Endo M et al(2004) Soc 152:A710–A715

15.  Xu J, Yang J, NuLi Y, Wang J, Zhang Z (2006) J Power Sources

160:621. doi:10.1016/j.jpowsour.2006.01.054

16.  Garsia B, Lavalee S, Perron G, Michot C, Armand M (2004) Electrochim Acta 49:4583–4588. doi:10.1016/j.electacta.2004. 04.041

17.  Sakaebe H, Matsumoto H (2003) Electrochem Commun 5:594– 598. doi:10.1016/S1388-2481(03)00137-1

18.  Sakaebe H, Matsumoto H, Tatsumi K (2005) J Power Sources

146:693–697. doi:10.1016/j.jpowsour.2005.03.071

19.  Matsumoto H, Sakaebe H, Tatsumi K (2005) J Power Sources

146:45–50. doi:10.1016/j.jpowsour.2005.03.103

20.  Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Mita Y, Usami A,Terada N, Watanabe M (2005) Electrochem Solid-State Lett 8: A577–A578. doi:10.1149/1.2041330