Фототранзистор. Схема вкл-я, принцип работы, параметры, УГО.
Фототр-р предст. собой транз-тор, в корпусе кот. есть прозрачное окно, через кот. световой поток может воздействовать на область базы. Схема включения тр-ра со свободной базой. На эмиттерном переходе U прямое, на коллекторном обратное. Вых. хар-ки фототр-ра аналогичны для вкл. тр-ра с ОЭ. Различные кривые соответствуют различным значениям светового потока.
Характеристики показывают, что при повышении напр-ния возн. эл. пробой. Штрих. участок ВАХ – эл. пробой. Фотоны вызывают генерацию пар носителей зарядов. В рез-те увелич. ток коллектора и прямое напр-ние эмиттерного перехода. Осн. пар-ры: интегр. чувствит-ть, раб. напр-ние 10-15В, темновой ток( сотни мкА), Макс. рассеиваемая мощность.
Мультивибраторы. Схема и принцип работы. Диаграмма работы.
Применяются для генерирования прямоугольных импульсов в тех случаях, когда нет жестких требований к их длительности и частоте повторения. Он представляет собой двухкаскадный усилитель с ОС замкнутый в кольцевую схему: выход первого усилителя соединен с входом второго и наоборот. Если Rк1=Rк2, Rб1=Rб2, С1=С2, то мультивибратор симметричный. При подключении источника питания, токи проходят через оба транзистора. Одновременно начинается зарядка конденсаторов. По мере увеличения коллекторных токов транзисторов повышается и коэффициент усиления плеч мультивибратора. Пока βКu<1 производим увеличение коллекторных токов обоих транзисторов и увеличение напряжений Uc1 иUc2. Мультивибратор работает как двухкаскадный усилитель с ОС. В следствии даже незначительной ассиметрии плеч мультивибратора (разброс параметров R, C, VT, коллекторный ток одного VT окажется больше другого VT). При βКu>1, то это приведет к возникновению регенеративного процесса. Пусть Iк1>Iк2, тогда получим Uбэ2↓→ Iк2↓→ Uкэ2↑→ Uбэ1↑→Iк1↑.Процесс увеличения Iк1 и уменьшения Iк2 в следствии действия ПОС носит лавинообразный характер и заканчивается переходом VT1 в режим насыщения, а VT2 в режим отсечки. При открытом VT1 конденсатор С1 оказывается подключенным через малое сопротивление rкэ1 между базой и эмиттером VT2. при этом отрицательное напряжение Uбэ2= -Uс1 поддерживает VT2 в закрытом состоянии. В таком состоянии которое называется временно-устойчивым (квазиустойчивым) мультивибратор будет находиться в течении времени определяемого перезарядкой конденсатора С1 по цепи +Еп→ Rб2→ С1→ VT1→ -Еп. В это время происходит зарядка конденсатора С2 по цепи +Еп→ Rк2→С2→ база-эмитер VT1→- Еп. Обычно Rк и Rб выбираются так, чтобы процесс зарядки протекал быстрее чем перезарядки поэтому С2 успеет зарядиться до значения +Еп. После окончания зарядки С2, транзистор VT1будет удерживаться в режиме насыщения за счет протекания тока базы. Iб= Iнас=Еп/Rб1. По мере перезарядки конденсатора С1 напряжение Uс1 увеличивается и в некоторый момент достигает нулевого значения. С этого момента VT2 открывается, его Uкэ2↓→Uбэ1↓→Iк1↓→Uкэ1↑→Uбэ2↑→Iк2↑. Этот процесс заканчивается с запиранием транзистора VT1 и переходом в насыщение транзистора VT2. Мультивибратор переходит во второе квазиустойчивое состояние в котором начинается зарядка С1 по цепи +Еп→ Rк1 →С1→ база-эмитер VT2 →-Еп и перезарядка С2 по цепи +Еп→ Rб1→ С2→ коллектор-эмитер VT2→ -Еп. Транзистор VT1 будет поддерживаться в закрытом состоянии напряжением Uс2, которое подключается через малое сопротивление rкэ2 между базой и эмиттером минусом к базе. Такое квазиустойчивое состояние будет сохраняться до тех пор пока Uс2 не достигнет нулевого значения. С этого момента начнет развиваться новый лавинообразный процесс, который приводит к отпиранию транзистора VT1 и запиранию VT2. время закрытого состояния VT1 определяется перезарядкой конденсатора С2. длительность импульса на выходе 1 и 2 будет примерно равняться: tn1≈C2∙Rб1∙ln2≈0,7C2∙Rб1; tn2≈C1∙Rб2∙ln2≈0,7C1∙Rб2, а общее время длительности сигнала будет T= tn1+tn2≈1,4Rб∙С.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.