3. The problem is to solve optimal control problem by economy
optimality for the process    for minimum of
expences
 for minimum of
expences  when the initial conditions are:
 when the initial conditions are:  ,
,  .
.
Solution
1) 
First of all we must write phase coordinates: 
So, this process can be described by the system of differential equations:

where  - control
parameter.
 - control
parameter.
2) Write Hamilton-Pontryagin function for our case:
 ,
,
where  - auxiliary functions.
 - auxiliary functions.
For finding of control parameter  let’s use the maximal principal, which states that in optimal
process Hamilton-Pontryagin function
 let’s use the maximal principal, which states that in optimal
process Hamilton-Pontryagin function  gets maximum value, for existing of which the requirement is
following:
 gets maximum value, for existing of which the requirement is
following: 

So, we have for our case:


For finding of auxiliary functions  let’s use Hamilton-Pontryagin equation in general form are the
following:
 let’s use Hamilton-Pontryagin equation in general form are the
following:


Let’s write it for our case:
 
   
 
   

Substituting the got values of auxiliary functions  in formula for finding of
control parameter
 in formula for finding of
control parameter  we
obtain:
 we
obtain:
 ,
,
Let’s denote our constant in more compact view

where,    ,
,  .
.
3) 
Let’s return to initial coordinates and synthesize
the phase trajectory  .
.
 , so we have
, so we have 




4) 
Let’s use the initial conditions:  and
 and 
Because of  ,
,  we will have
  we will have 
 , that’s why we eliminate one constant, it
will be equal to
, that’s why we eliminate one constant, it
will be equal to  .
.
 , thus we eliminate the second constant
, thus we eliminate the second constant  .
.


From the system of two last equations we found the rest of constants


5) So, we have the control parameter

and the equation of phase trajectory (fig. 3.1):


Fig. 3.1 Phase trajectory
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.