Карты контроля качества. Установка контрольных пределов. Контрольные карты Шухарта. Контрольные карты для отдельных наблюдений, страница 8

Cp = (ВГС-НГС)/(6*сигма) где сигма представляет собой оценку стандартного отклонения процесса, ВГС и НГС - соответственно верхнюю и нижнюю границы плановой спецификации (инженерные допуски). Если распределение контролируемой характеристики качества или переменной (например, размер поршневых колец) подчиняется нормальному закону, и процесс абсолютно точно центрирован (т.е. среднее значение процесса соответствует положению центральной линии на контрольной карте), то данный индекс может интерпретироваться как та часть стандартной кривой нормального распределения (ширина процесса), которая находится внутри границ инженерных допусков. В случае нецентрированного процесса, вместо рассмотренного выше индекса используется уточненный индекс Cpk . Для "пригодного" процесса индекс Cp должен быть больше 1. Это означает, что для того, чтобы можно было ожидать попадание более 99% всех выпущенных деталей или изделий в рамки приемлемых инженерных спецификаций, величина интервала между контрольными пределами плановых спецификаций должна превышать 6 сигма.
  12.  Другие специализированные типы контрольных карт.

Далее рассматривается ряд других наиболее широко используемых методов и соответствующих им типов контрольных карт - "рабочих лошадок" контроля качества. Однако, с приходом недорогих персональных компьютеров, все большую популярность приобретают процедуры, требующие проведения большего объема вычислений.

X-карты для данных с негауссовским распределением. Контрольные пределы для стандартных X-карт вычисляются, исходя из предположения о приблизительно нормальном распределении выборочных средних. Следовательно, для отдельных наблюдений в выборках нормальность распределения не обязательна, так как. по мере увеличения объема выборок распределение выборочных средних будет приближаться к нормальному (см. обсуждение центральной предельной теоремы в разделе Элементарные понятия статистики. Однако необходимо отметить, что при построении R-карты, S-карты и S**2-карты предполагается, что отдельные наблюдения обладают нормальным распределением). В монографии Шуарта (Shewhart, 1931) автор экспериментирует с различными негауссовскими распределениями отдельных наблюдений и оценивает полученные в результате распределения средних для выборок объема 4. В результате было обнаружено, что, на самом деле, до тех пор, пока распределение отдельных наблюдений в выборках является приблизительно нормальным, можно применять вычисленные на основе нормального распределения стандартные контрольные пределы.

Однако, при малых объемах выборок и сильной асимметрии распределения наблюдений, построенные по таким данным стандартные контрольные пределы приводят как к получению большого числа ложных сигналов тревоги (т.е. росту вероятности альфа-ошибки), так и увеличению числа случаев, когда при фактически произошедшей разладке процесс продолжает считаться контролируемым (росту вероятности бета-ошибки). В программе STATISTICA существует возможность расчета контрольных пределов для X-карт (а также индексов пригодности процесса) на основе так называемых  кривых Джонсона  , с помощью которых аппроксимируется асимметрия   и  эксцесс  большой группы негауссовских распределений. Негауссовские X-карты рекомендуется применять в том случае, когда распределение выборочных средних обладает явной асимметрией или является негауссовским. 

Контрольная карта T**2 Хотеллинга. Когда исследуется несколько взаимосвязанных характеристик качества (заданных в виде нескольких переменных), для всех средних значений можно построить общий график, воспользовавшись для этого многомерной статистикой Хотеллинга T**2 (впервые предложена в работе Hotelling, 1947).

CUSUM-карта

Контрольная карта накопленных сумм (CUSUM-карта). Контрольная карта типа CUSUM была впервые предложена в работе Page (1954).