7. На сборку поступило десять деталей, среди которых четыре бракованные. Сборщик наудачу берет три детали. Найти вероятности событий:
A – все взятые детали стандартные;
B – только одна деталь среди взятых стандартная;
С – хотя бы одна из взятых деталей стандартная.
Решение:
Всего способов выбрать 3 детали из 10 равно .
Число исходов, благоприятствующих событию A равно (числу способов взять 3 стандартных детали из 4).
p(A)= =0.033.
Число исходов, благоприятствующих событию B равно (числу способов взять 1 бракованную деталь из 4 умножить на число способов взять 2 стандартных детали из 6).
p(B)==0.5.
p(C)=1-p(), где - событие, при котором все взятые детали стандартные.
Число исходов, благоприятствующих событию равно (числу способов взять 3 стандартные детали из 6).
p()=,
p(C)=1-=0.83.
Ответ: p(A)=0.033, p(B)=0.5, p(C)=0.83.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.