1. Исследовать систему на совместимость и решить методом Крамера.
Решение:
Т-ма Крамера: крамеровская система имеет единственное решение.
Крамеровская система – это система, удовлетворяющая следующим 2-м условиям:
1) число уравнений системы = числу неизвестных
2) определитель, составленный из коэффициентов при неизвестных, отличен от 0
Составим определитель:
Система совместима, т.е. имеет хотя бы одно решение.
Ответ: (-4; 1; -2)
2. Решить систему линейных алгебраических уравнений методом Гаусса
.
Решение:Выпишем расширенную матрицу системы
Приведем эту матрицу к ступенчатому виду. Для этого мы можем делать элементарные преобразования строк.
Т-ма Кронекери-Копелли: СЛУ совместима , когда ранг матрицы = рангу расширенной матрицы системы.
Ранг матрицы – число ненулевых строк в ступенчатом виде матрицы
С – расширенная матрица системы, А – матрица системы
r(C)=2
r(A)=2 r(C)=r(A) и по теореме Кронекери-Копелли система совместима. От ступенчатой матрицы переходим к ступенчатой системе:
Т. к. число уравнений системы < числа неизвестных, то в этом случае система имеет бесконечно много решений. Чтобы найти решение, надо разбить неизвестные на главные и свободные.
главные неизвестные, свободная неизвестная (может быть любым числом),
3. Разложить пространство R4 на прямую сумму подпространств размерности 2.
Решение:
R4 – множество строк длины 4 (4-х мерное арифметическое пространство)
R4={(
Если А и В – подпространства пространства V, то через А+В обозначают множество {a+b|aЄA, bЄB}
В случае, если А∩В={Ø} – нулевое подпространство, то такая сумма V=A+B называется прямой и в этом случае пишут V=A. В нашем случае Ø=(0,0,0,0)
Пусть теперь А={( B={(0,0,
Проверим, что пространство задаётся в виде А+В
Пусть
а=( в==(0,0,, значит R4 =A.
Ответ: R4 =A, где А={( B={(0,0,
4. Докажите, что в пространстве M(2, R) система векторов линейно независима.
Решение:
Система векторов а1,а2,а3,а4 линейно независима, если в любой системе вида
Ø
В нашем случае, пусть
Значит, система векторов Е1, Е2, Е3, Е4 линейно независима.
5. Найдите жорданову нормальную форму матриц: .
Решение:
Жорданова нормальная форма матрицы состоит из клеток Жордана вдоль главной диагонали, а все остальные элементы такой матрицы нулевые.
Клетка Жордана – это матрица вида:
Если размер клетки n*n, то она обозначается символом Yn(a).
Пример: Y1(a)=а, Y2(a)=, Y3(a)=
В искомой матрице записывают характеристический многочлен матрицы А и находят его корни.
Характеристический многочлен имеет единственный корень кратности 3.
Надо выяснить, какой из 3-х случае нам подходит:
Y1=, Y2=, Y3=(1)
Число всех клеток Жордана вычисляют по формуле:
A-E =~
Значит, . Искомая матрица имеет вид: Y=
Ответ: Y=
6. Исследовать, являются ли векторы
векторного пространства линейно зависимыми.
Решение:
Пусть
Это приводит к системе:
Т. к. определитель системы ≠ 0, то система имеет единственное нулевое решение. Значит, система векторов f(x), g(x), h(x) являются линейно независимыми.
Ответ: линейно независимы.
7. Найти собственные значения и собственные векторы линейного оператора пространства R2, заданного в некотором базисе матрицей
.
Решение:
Характеристический многочлен имеет единственный корень кратности 2.
Значит, - собственное значение линейного оператора.
Найдем собственный вектор, отвечающий найденному собственному значению:
Пусть х = (х1, х2) х(А-
θ
Пусть х2=t →x1=-t, где t – любое число
Ответ: собственное значение λ = -1, собственный вектор (-t, t), t – любое число.
8. Найти все значения , при которых вектор линейно выражается через векторы
Решение:
Мы должны найти все λ, для которых уравнение (1)
имеет решение
что приводит к системе:
Уравнение (1) имеет решение ↔, когда данная система имеет решение. А согласно теореме Кронекери-Копелли данная система совместима ↔ ранг матрицы системы совпадает с рангом расширенной матрицы.
~~~
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.