Измерение средствами для контроля диаметра
(двухточечное измерение)
Метод осуществляется в двух вариантах: путем непрерывного измерения при вращении детали относительно двухточечного измерительного средства или измерением диаметров по отдельным направлениям. Пример реализации метода измерения показан на рис. 2.21. В процессе измерения деталь поворачивают не менее чем на 180° и фиксируют разность между наибольшим и наименьшим диаметрами сечения . Отклонение от круглости равно .
Рис. 2.21: 1 – контролируемая деталь; 2 – неподвижная опора; 3 – измерительная головка; 4 – боковой упор; 5 – стойка |
а |
б |
Рис. 2.22. Измерение овальности в трех (а) или четырех (б) направлениях
Возможно измерение диаметров в отдельных направлениях, равномерно расположенных по периметру. В случае, когда отклонение от круглости имеет вид овальности, оптимальными вариантами являются измерения в трех или четырех направлениях (рис. 2.22). Определяется разность между наибольшим и наименьшим значением измеренных диаметров . Отклонение от круглости равно ,где – поправочный коэффициент, принимаемый равным: при измерении в трех направлениях; при измерении в четырех направлениях; при измерении в шести и более направлениях.
Двухточечными измерениями можно пользоваться только в случаях, когда отклонение от круглости имеет характер овальности или огранки с четным числом граней. Измерение огранки с нечетным числом граней при точечном методе невозможно. Если отклонение от круглости содержит составляющие с нечетным числом неровностей на периметре, то двухточечное измерение должно дополняться трехточечным.
Измерение с применением призмы (трехточечное измерение)
Различают симметричную схему измерения, когда измерительный наконечник располагается по биссектрисе угла призмы (рис. 2.23,а) и несимметричную схему, когда измерительный наконечник располагается под углом к биссектрисе (рис. 2.23,б). Измеряемый вал устанавливают в призме и вращают. Определяют наибольшее изменение показаний () головки за один оборот. Отклонение от круглости равно , где – поправочный коэффициент, который зависит от количества неровностей на периметре детали, угла или комбинации углов и . Рекомендуемые углы и , а также значения коэффициентов приведены в табл. 2.5. Трехточечные измерения применимы и для отверстий (схемы измерения приведены на рис. 2.24).
а |
б |
Рис. 2.23. Измерения отклонений от круглости в призме:
а – симметричная схема; б – несимметричная схема.
1 – контролируемая деталь; 2 – призма;
3 – измерительная головка; 4 – стойка
Таблица 2.5
Значения углов и поправочных коэффициентов для измерения
отклонений от круглости в призмах
Число граней (гармоник) измеряемого профиля, 1/об |
Симметричная схема измерения |
Несимметричная схема измерения |
|||||
2 |
1,38 |
1,00 |
* |
1,58 |
2,38 |
1,41 |
1,64 |
3 |
1,38 |
2,00 |
3,00 |
1,00 |
2,00 |
2,00 |
0,88 |
4 |
* |
0,41 |
* |
0,42 |
1,01 |
1,41 |
0,96 |
5 |
2,24 |
2,00 |
* |
2,00 |
2,00 |
2,00 |
1,73 |
6 |
* |
1,0О |
3,00 |
* |
0,42 |
0,73 |
1,08 |
7 |
1,38 |
* |
* |
2,00 |
2,00 |
2,00 |
1,73 |
8 |
1,38 |
2,41 |
* |
0,42 |
1,01 |
1,41 |
0,79 |
9 |
* |
* |
3,00 |
1,00 |
2,00 |
2,00 |
1,35 |
10 |
2,24 |
1,00 |
* |
1,58 |
2,38 |
1,41 |
0,79 |
11 |
* |
2.00 |
* |
* |
* |
* |
1.73 |
12 |
1,38 |
0,41 |
3,00 |
2,00 |
1,01 |
0,73 |
1,08 |
13 |
1,38 |
2,00 |
* |
* |
* |
* |
1,73 |
14 |
* |
1,00 |
* |
1,58 |
0,42 |
1,41 |
0,96 |
15 |
2,24 |
* |
3,00 |
1,00 |
2,00 |
2,00 |
0,88 |
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.