Задачи Аналитическая динамика:( Пятницкий Е.С.)
12.8 В следующих задачах движение системы определяется лагранжианом L. Найти движение системы, если
а)
б)
в)
12.9. Свободная материальная точка массы т движется в потенциальном силовом поле, причем П =П(x,у,z,t). Декартовы координаты точки х, у, zсвязаны с ортогональными криволинейными координатами равенствами
х = х(), У = У(), z = z().
Найти лагранжиан точки в координатах , используя коэффициенты Ламе
=
( k=1,2,3)
12.10. Точка массы т движется в силовом поле с потенциалом П(x, у, z). Найти лагранжиан точки и составить ее уравнения движения в следующих системах координат:
а) цилиндрические координаты;
б) сферические координаты;
в) параболические координаты и,v, : х = у= .
12.11. Для плоского движения материальной точки в силовом поле с потенциалом П (х, у) найти лагранжиан в координатах и , связанных с декартовыми координатами равенствами
12.12. Найти функцию Лагранжа и составить уравнения движения двух материальных точек с массами и , притягивающихся одна к другой по закону Ньютона. Выписать также интегралы движения системы.
Указание. За обобщенные координаты принять декартовы координаты х, у, zцентра масс системы, расстояние между точками rи углы и (широты и долготы), которые определяют направление прямой, соединяющей точки.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.