Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.
Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.
Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.
Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.
Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.
Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.
13.5. Динамические модели с двусторонними связями отрезков планового периода
В данном разделе анализируются Прикладные межотраслевые модели, которые в соответствии с классификацией в 13.1 могут быть отнесены к типу "полностью динамических". Принципиальным преимуществом моделей этого типа по сравнению с рекурсивными и квазидинамическими является более адекватное отражение причинно-следственных зависимостей между прошлым, настоящим и будущим развитием народного хозяйства. Особенность "полностью динамических" моделей с вычислительной точки зрения заключается в том, что показатели, относящиеся к различным временным отрезкам (годам, подпериодам) планового периода, определяются посредством решения единой "межвременной" задачи. Соответственно возрастают требования к математическому и техническому обеспечению проводимых расчетов.
Среди моделей, отвечающих формальным признакам "полностью динамических", целесообразно различать модели со "слабой" и "сильной" экономической взаимосвязанностью временных отрезков. Примерами моделей со "слабой" экономической взаимосвязанностью являются обобщения оптимизационных рекурсивных моделей, в которых взаимосвязанность временных отрезков достигается благодаря включению интегральной целевой функции. "Сильная" экономическая взаимосвязанность временных отрезков достигается благодаря достаточно полному отражению в модели долговременных инвестиционных процессов с помощью сквозных динамических производственных способов, лаговых соотношений распределения капитальных вложений, воспроизводства основных фондов, производственных мощностей и потребительского имущества.
Ниже рассматриваются две модели с временными взаимозависимостями. Первая (с распределенными лагами) в полной мере относится к динамическим моделям с "сильной" взаимосвязанностью. Вторая занимает в этом смысле промежуточное положение, обладая важными свойствами полностью динамических моделей и сохраняя преимущества моделей рекурсивного типа.
Модель с распределенными лагами. Межотраслевая балансовая модель с распределенными инвестиционными лагами предложена Э.Ф. Барановым ([6. С. 273 — 284]). Она включает уравнения балансов производства и распределения продукции и балансы основных фондов и представляет собой систему из 2nТ линейных уравнений (где п — число отраслей). Позднее балансовая модель была преобразована И.С. Матлиным в оптимизационную путем замены равенств неравенствами (по балансам фондов), введения ограничений по трудовым ресурсам, условий формирования фонда потребления и критерия оптимальности ([2. С. 60-65]; [9. С. 168 - 184]).
Ключевыми элементами модели являются зависимости между капитальными вложениями, вводом и выбытием основных производственных фондов и объемами производства. Ниже приводится модификация модели, включенная в комплекс укрупненных межотраслевых моделей, разработанный ГВЦ Госплана СССР и ЦЭМИ АН СССР. В запись модели внесены изменения унифицирующего характера.
1. Балансы производства и распределения продукции:
(13.34)
.
Зависимость, определяющая потребности в капитальных вложениях на расширенное воспроизводство для , в точности соответствует (12.4); sit — функция, преобразующая вектор целевых показателей в конечную продукцию 1-й отрасли.
2. Балансы основных производственных фондов по отраслям-потребителям:
j Î I, (13.35)
Здесь используются упрощенные по сравнению с (12.7), (12.9), (12.13) зависимости. Отметим, что вплоть до года объемы действующих производственных фондов предопределены капитальными вложениями допланового периода.
3. Балансы трудовых ресурсов:
(13.36)
где slt — функция, характеризующая потребности в трудовых ресурсах для непроизводственной сферы в зависимости от вектора достигаемых целевых показателей.
4. Критерий оптимальности. Максимизируется функция, определяемая на векторе целевых показателей за весь плановый период, в частности:
(13.37)
Кроме обязательных условий (13.34) — (13.37) (их число равно 2nТ, что при стандартной 18-отраслевой классификации и плановом горизонте в 15 лет дает 540 уравнений и неравенств), модель включает ограничения для отдельных лет планового периода (по объемам производства некоторых отраслей, фонду капитальных вложений, использованию отдельных ресурсов) и для пятилеток (по фонду капитальных вложений), а также условия неотрицательности переменных xj(t) и . Рассматриваемая модель имеет относительно узкие возможности оптимизации. С точки зрения методологии оптимизационного подхода наиболее искусственным является априорное жесткое установление распределенных инвестиционных лагов по всем отраслям.
Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.
Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.
Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.
Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.
Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.
Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.