Транзисторные умножители частоты, страница 2

Для расчета импульсов коллекторного тока (1.71) необ­ходимо знать мгновенное значение напряжения на переходе. Считая все элементы эквивалентной схемы рис. 1.23 (кроме Сд и gп) постоянными, нетрудно составить дифференциаль­ное уравнение,  которому это напряжение удовлетворяет

В левой части этого равенства представлен ток, выте­кающий из перехода (точка «п» рис. 1.23) через емкость эмиттерного перехода, диффузионную емкость и проводи­мость gп соответственно. В правой части показан ток, вте­кающий в переход через сопротивление базы rs и емкость коллектор — переход Скп.

Собирая в левой части все величины, зависящие от напря­жения на переходе, можно получить

                                (1.72)

где τп = rsэ + Скп) — постоянная времени транзистора в пассивном режиме, а τк = rsСкп — постоянная времени цепи коллектора.

Первая из них названа так потому, что она характери­зует процессы в запертом транзисторе, когда iк= 0 и из (1.72) получается линейное дифференциальное уравне­ние для напряжения на переходе с постоянной времени τп.

В активной области, наоборот, мало напряжение на переходе, а ток генератора велик. Поэтому в (1.72) можно положить uп = 0 и получить для тока дифферен­циальное уравнение с постоянной времени τа.

К сожалению, транзисторы весьма редко работают в таких режимах, когда две указанные линейные области ярко выражены. В большинстве случаев в правой части (1.72) надо учитывать обе группы членов. Во всяком случае необходимо учитывать напряжение на переходе ип, имею­щее тот же порядок, что и напряжение rsiкβ-1, пропор­циональное току генератора. В то же время производной напряжения на переходе обычно можно пренебречь. Дело в том, что в (1.72) перед производными стоят постоянные времени τп и τа соответственно. Отношение же постоянных времени пассивной и активной областей является для транзи­сторов малой величиной. Для диффузионных транзисторов оно имеет порядок 10-3—10-2. Для высокочастотных дрей­фовых транзисторов это отношение не больше 0,1—0,2. Все сказанное означает, что в (1.72) можно положить τп = 0, хотя для дрейфовых транзисторов такое предположение может давать заметную погрешность. В результате вместо (1.72) получается следующее уравнение:

Полагая в (1.73) напряжения и токи неизменными во вре­мени, убеждаемся, что функция Fст(iк) является обратной по отношению к статической зависимости тока коллектора от напряжения на базе. Статическая характеристика реаль­ного транзистора хорошо подчиняется закону (1.74) при соответствующем подборе параметров rs, β, iк0.

К сожалению, точное решение уравнений (1.73) и (1.74) невозможно. Приближенное решение численными методами наталкивается на трудности, связанные с тем, что необхо­димо найти стационарное решение, начальные условия для которого неизвестны. Конечно, подбирая начальные усло­вия, это решение найти можно, однако ценность его для вычисления гармоник тока все равно невелика, посколь­ку оно зависит от большого числа параметров.

Чтобы обойти указанные трудности, аппроксимируем статическую характеристику коллекторного тока кусками прямых. Очевидно, что функция, обратная статической характеристике, в этом случае равна

                                                  (1.75)