Минестерстово Образования Республики Беларусь
Учреждение Образования «ГГУ им. Ф.Скорины»
ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ
ТЕМА:
ИЗУЧЕНИЕ ТЕНЗОРА МОМЕНТОВ ИНЕРЦИИ ТВЕРДОГО ТЕЛА
ВЫПОЛНИЛ:
СТУДЕНТ ГРУППЫ Ф-11
Родин Антон Сергеевич
ПРОВЕРИЛ:
Тихова Елена Леонидовна
Гомель2005
ЦЕЛЬ РАБОТЫ: осуществить экспериментальную проверку формулы, связывающей момент инерции тела с его главными центральными моментами инерции и построить эллипсоиды тензора моментов инерции данных тел.
ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: установка FPM-05, набор тел, штангенциркуль.
ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ.
Момент инерции некоторого тела относительно оси ON, проходящей через его центр масс, связан с главными центральными моментами инерции этого тела формулой
(1)
где , и -направляющие косинусы оси On, т.е. косинусы углов между осью ON и главными осями OX, OY и OZ тензора моментов инерции тела (рис.1).
Преобразуем соотношение (1) к виду удобному для экспериментальной проверки. Используя известную формулу для периода крутильных колебаний тела вокруг некоторой оси
где I -момент инерции тела относительно этой оси, -момент кручения подвеса, нетрудно получить следующие соотношения
(2)
Здесь , , и -периоды крутильных колебаний тела относительно его главных центральных осей и оси ON.
Согласно рис.2, для направляющих косинусов оси ON исследуемого (параллелепипеда) можем записать
(3)
Подставив (2) и (3) в формулу (1) приходим к соотношению
(4)
Таким образом, задача проверки формулы (1) сводится к проверке выражения (4), устанавливающего связь между линейными размерами тела и периода его крутильных колебаний относительно четырех осей, три из которых являются главными центральными осями.
Практически для увеличения точности измеряются не периоды крутильных колебаний , , и , а продолжительность , , и нескольких полных колебаний. Искомые значения периодов могут быть найдены из простого соотношения
(5)
где t -время, за которое совершается n полных колебаний.
Соотношение (1) допускает наглядную геометрическую интерпретацию. Изменяя ориентацию оси ON и откладывая вдоль нее значение соответствующего момента инерции , получим геометрическое место точек, образующих эллипсоид, получивший название эллипсоида тензора моментов инерции. Для изучения последнего удобно рассмотреть его сечения координатными плоскостями XOY, XOZ, и YOZ системы координат образованной главными осями OX, OY, OZ.
Полагая в выражении (1) угол и учитывая возникающую при этом связь между углами и , находим уравнение кривой
(6)
полученной сечением эллипсоида тензора моментов инерции плоскостью XOY. С учетом (2) уравнение (6) принимает вид
(7)
Аналогично получаются уравнения сечений изучаемого эллипсоида плоскостями YOZ: (8)
ZOX: (9)
Измерив значение периодов крутильных колебаний , , данного тела относительно его главных центральных осей и изменяя значения направляющих углов , и от до , с помощью соотношений (7-9) можно построить сечения эллипсоида тензора моментов инерции исследуемого тела и сделать выводы о его характере и особенностях.
Описание установки.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.