Лекция 6.
Тема: Методы вариационного исчисления.
1. Постановка задачи оптимального управления как вариационной задачи.
2. Классификация задач оптимального управления: по виду ограничений, по виду краевых условий, по критерию оптимальности..
3. Необходимые условия экстремума функционала: уравнения Эйлера.
4. Достаточные условия экстремума функционала: условия Лежандра.
5. Задача оптимального управления на условный экстремум.
6. Каноническая форма уравнений Эйлера-Лагранжа.
Задачей вариационного исчисления является задача отыскания функций, доставляющих экстремальное (максимальное или минимальное) значение определенным величинам, которые зависят от этих функций и называются функционалами. Функционал можно рассматривать как функцию особого рода, в которой роль независимой переменной играет другая функция.
Задача синтеза (построения) оптимального управления формулируется как вариационная задача. При этом кроме уравнений объекта управления должны быть заданы ограничения на управление и фазовые координаты, краевые условия и выбран критерий оптимальности.
Пусть уравнение объекта задается в нормальной форме
 (6.1)
                                    
(6.1)
или в скалярном виде
 ,
,
где
 – фазовый вектор;
 – фазовый вектор;  –
вектор управления. Известно, что любое уравнение, разрешимое относительно
старшей производной, можно преобразовать к равносильной нормальной системе
уравнений.
 –
вектор управления. Известно, что любое уравнение, разрешимое относительно
старшей производной, можно преобразовать к равносильной нормальной системе
уравнений.
На управление и фазовый вектор могут быть наложены ограничения в виде конечных соотношений – равенств, неравенств. Их в общем виде можно записать так:
 ,
,     .                                   (6.2)
.                                   (6.2)
Здесь  и
 и  – некоторые заданные
множества, зависящие, вообще говоря, от времени, причем
 – некоторые заданные
множества, зависящие, вообще говоря, от времени, причем  и
 и  . В (6.2) первое
соотношение называется ограничением на управление, второе соотношение – ограничением
на фазовый вектор или фазовым ограничением. Ограничения на
управление и фазовый вектор могут быть не разделены, и в общем случае записаны
в виде
. В (6.2) первое
соотношение называется ограничением на управление, второе соотношение – ограничением
на фазовый вектор или фазовым ограничением. Ограничения на
управление и фазовый вектор могут быть не разделены, и в общем случае записаны
в виде
 .
.
Краевые (граничные) условия – ограничения на фазовый
вектор в начальный  и конечный
 и конечный  моменты времени в общем виде можно
записать так:
 моменты времени в общем виде можно
записать так:
 .                                
(6.3)
.                                
(6.3)
Вектор  называют левым,
а вектор
 называют левым,
а вектор  – правым концом траектории. Краевые
условия имеют вид (6.3), если ограничения на левый и правый конец траектории разделены.
В противном случае они записываются в виде
 – правым концом траектории. Краевые
условия имеют вид (6.3), если ограничения на левый и правый конец траектории разделены.
В противном случае они записываются в виде

Критерий оптимальности, который является числовым показателем качества системы, задается в виде функционала
 .                                           
(6.4)
.                                           
(6.4)
Задача оптимального управления формулируется следующим образом:
Определение.
При заданных уравнении объекта управления (6.1), ограничениях (6.2) и краевых
условиях (6.3) требуется найти такое управление  и
фазовую траекторию
 и
фазовую траекторию  , при которых критерий (6.4) принимает
минимальное (или максимальное) значение. Тогда управление
, при которых критерий (6.4) принимает
минимальное (или максимальное) значение. Тогда управление  и траектория
 и траектория  называются
оптимальными.
 называются
оптимальными. 
В дальнейшем для определенности примем, что функционал
(6.4) минимизируется. Задачу максимизации выбором нового критерия  всегда можно свести к задаче минимизации.
 всегда можно свести к задаче минимизации.
В зависимости от вида ограничений (6.2), вида краевых условий (6.3), времени начала и окончания процесса управления, а также критерия оптимальности (6.4) выполняется классификация задач оптимального управления.
1. По виду ограничений различают задачи:
a) классического типа, когда ограничения задаются в виде равенства
 ;                                     
(6.5)
;                                     
(6.5)
b) неклассического типа, когда ограничения задаются в виде неравенств
 .                                
   (6.6)
.                                
   (6.6)
К классическому типу относятся также изопериметрические задачи, т.е. задачи с изопериметрическими ограничениями:
 .                           
(6.7)
.                           
(6.7)
Введением дополнительных переменных от изопериметрических ограничений всегда можно избавиться. Достаточно вместо изопериметрических ограничений (6.7) в условие задачи ввести следующие уравнения и краевые условия:
 ,
,   ,
,   
   
Формально задачи неклассического типа введением дополнительных переменных можно преобразовать к задачам классического типа. Действительно, ограничения (6.6) можно заменить ограничениями типа равенств
 .
.
Задачи оптимального управления неклассического типа могут иметь ограничения вида
 .
.
Введением дополнительных переменных эти ограничения могут быть заменены соотношениями
 ,
,   ,
,   
    .
.
2. По виду краевых условий различают задачи:
a) 
с фиксированными (закрепленными)
концами траектории, когда каждое из множеств  и
 и  состоит из одной точки, т.е.
 состоит из одной точки, т.е.  ,
,  ,
,  и
 и  –
заданные точки;
 –
заданные точки;
b) 
с подвижным правым концом ( состоит более чем из одной точки), с
подвижным левым концом (
 состоит более чем из одной точки), с
подвижным левым концом ( состоит более чем из
одной точки), с подвижными концами (оба конца подвижны);
 состоит более чем из
одной точки), с подвижными концами (оба конца подвижны);
c) 
со свободным правым концом ( совпадает со всем фазовым пространством,
т.е. правый конец траектории без ограничений).
 совпадает со всем фазовым пространством,
т.е. правый конец траектории без ограничений).
3. По времени начала и окончания процесса различают задачи:
a) 
с фиксированным временем, когда
начальный  и конечный
 и конечный  моменты
времени фиксированы;
 моменты
времени фиксированы;
b) 
с нефиксированным временем, когда
один из моментов времени  или
 или  не фиксирован.
 не фиксирован.
4. По критерию оптимальности различают:
a) задачу Больца; при этом критерий имеет вид

b) задачу Лагранжа; при этом критерий имеет вид
 ;
;
c) задачу Майера; при этом критерий имеет вид
 .
.
Задача Майера в частном случае, когда функционал имеет
вид  , называется задачей максимального
(оптимального) быстродействия.
, называется задачей максимального
(оптимального) быстродействия. 
Задачи Больца, Лагранжа и Майера эквивалентны в том смысле, что путем преобразования переменных можно от одной задачи перейти к другой.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.