Расчет для определенных условий теплообменного аппарата

Страницы работы

Содержание работы

2 РАСЧЕТ ТЕПЛООБМЕННОГО АППАРАТА

Целью выполнения расчетов является получение практических навыков по правильному использованию основных зависимостей и формул, излагаемых в разделах  рабочей программы 7 Теория теплообмена, 8 Теплопроводность, 9 Теплопередача, 10 Конвективный теплообмен, 11 Теплообмен излучением. 

Заданием ко второму разделу курсовой работы предполагается рассчитать для определенных условий теплообменный аппарат.

2.1 ТИПЫ ТЕПЛООБМЕННЫХ АППАРАТОВ

Теплообменным аппаратом (теплообменником) называется устройство, в котором осуществляется теплообмен между двумя или несколькими теплоносителями.

По принципу действия теплообменники подразделяются на поверхностные, контактные и с внутренним источником теплоты (например, реакторы атомных электростанций). Поверхностные теплообменники делятся на рекуперативные и регенеративные, а контактные – на смесительные и барботажные.

В рекуперативных теплообменниках теплоносители непрерывно омывают разделяющую стенку (поверхность теплообмена) с двух сторон и обмениваются при этом теплотой. В рекуперативном трубчатом теплообменнике один из теплоносителей протекает внутри труб, а второй омывает их наружные поверхности.

В рекуперативных теплообменниках движение жидкости осуществляется по трем основным схемам или их сочетаниям.

Конструктивно рекуперативные теплообменные аппараты могут выполняться с пластинчатой и трубчатой (рис. 1 и 2) поверхностями теплообмена.

В регенеративных теплообменниках (регенераторах) одна и та же поверхность поочередно омывается то горячим, то холодным теплоносителем. При протекании горячего теплоносителя поверхность регенератора, воспринимая теплоту от этой жидкости, нагревается, а при протекании холодного теплоносителя поверхность регенератора, отдавая аккумулированную теплоту холодному теплоносителю, охлаждается.

В смесительных теплообменниках передача теплоты от горячего к холодному теплоносителю происходит при непосредственном контакте и смешении обоих теплоносителей. Смесительный теплообменник целесообразно использовать для теплоносителей, которые либо легко разделить после смешения (например, вода и воздух), либо перемешать (например, пар и вода).


Теплообменные аппараты могут иметь самое разнообразное назначение – паровые котлы, конденсаторы, пароперегреватели, воздухонагреватели, радиаторы и т.д. Теплообменные аппараты в большинстве случаев значительно отличаются друг от друга как по своим формам и размерам, так и по применяемым в них рабочим телам. Несмотря на большое разнообразие теплообменных аппаратов, основные положения теплового расчета для них остаются общими.

2.2 МЕТОДИКА ТЕПЛОВОГО РАСЧЕТА РЕКУПЕРАТИВНОГО ТЕПЛООБМЕННОГО АППАРАТА

Различают конструктивный и поверочный тепловые расчеты теплообменного аппарата.

Цель конструктивного расчета состоит в определении величины поверхности теплообмена по известному количеству передаваемой теплоты и температурам теплоносителей на входе и выходе аппарата.

                                         а                                                              б

Рис. 3. примеры графиков изменения температуры теплоносителей по длине прямоточного (а) и противоточного (б) теплообменников

 
Когда возникает необходимость работы готового теплообменника в условиях, отличных от проектных, то выполняется поверочный расчет. При этом определяются температуры теплоносителей на выходе теплообменника и количество передаваемой теплоты по известным величине поверхности теплообмена и температурам теплоносителей на входе в теплообменник.

На рис. 3 изображены примеры графиков изменения температур теплоносителей по длине прямоточного (а) и противоточного (б) теплообменников. Индексами 1 и 2 обозначены параметры соответственно горячего и холодного теплоносителей, одним ( ‘ ) и двумя ( “ ) штрихами – их температуры соответственно на входе и выходе аппарата.

2.2.1 Конструктивный тепловой расчет теплообменного аппарата

Основными уравнениями при расчете теплообменника являются уравнение теплового баланса и уравнение теплопередачи.

Уравнение теплового баланса [1]

                         ,                               (2.1)

или

                     ,                         (2.2)

где Q – полезный тепловой поток, Вт;

      G1, G2 – массовый расход соответственно горячего и холодного теплоносителей, кг/с, ;

 - средние массовые теплоемкости теплоносителей в интервале температур от t’ до t”, Дж/(кг∙К);

η – коэффициент использования теплоты;

w – скорость теплоносителя, м/с;

f – сечение, м2;

ρ – плотность, кг/ м2;

 - изменение температуры горячего и холодного теплоносителя по длине аппарата.

Уравнение теплопередачи

                                                     ,                                                (2.3) 

где k и Δt – коэффициент теплопередачи, Вт/( м2∙K) и средний температурный напор для всего теплообменного аппарата, К;

       F – поверхность теплообмена, м2.

При конструктивном расчете повехность теплообмена определяется из уравнения теплопередачи (2.3)

Похожие материалы

Информация о работе