2 РАСЧЕТ ТЕПЛООБМЕННОГО АППАРАТА
Целью выполнения расчетов является получение практических навыков по правильному использованию основных зависимостей и формул, излагаемых в разделах рабочей программы 7 Теория теплообмена, 8 Теплопроводность, 9 Теплопередача, 10 Конвективный теплообмен, 11 Теплообмен излучением.
Заданием ко второму разделу курсовой работы предполагается рассчитать для определенных условий теплообменный аппарат.
2.1 ТИПЫ ТЕПЛООБМЕННЫХ АППАРАТОВ
Теплообменным аппаратом (теплообменником) называется устройство, в котором осуществляется теплообмен между двумя или несколькими теплоносителями.
По принципу действия теплообменники подразделяются на поверхностные, контактные и с внутренним источником теплоты (например, реакторы атомных электростанций). Поверхностные теплообменники делятся на рекуперативные и регенеративные, а контактные – на смесительные и барботажные.
В рекуперативных теплообменниках теплоносители непрерывно омывают разделяющую стенку (поверхность теплообмена) с двух сторон и обмениваются при этом теплотой. В рекуперативном трубчатом теплообменнике один из теплоносителей протекает внутри труб, а второй омывает их наружные поверхности.
В рекуперативных теплообменниках движение жидкости осуществляется по трем основным схемам или их сочетаниям.
Конструктивно рекуперативные теплообменные аппараты могут выполняться с пластинчатой и трубчатой (рис. 1 и 2) поверхностями теплообмена.
В регенеративных теплообменниках (регенераторах) одна и та же поверхность поочередно омывается то горячим, то холодным теплоносителем. При протекании горячего теплоносителя поверхность регенератора, воспринимая теплоту от этой жидкости, нагревается, а при протекании холодного теплоносителя поверхность регенератора, отдавая аккумулированную теплоту холодному теплоносителю, охлаждается.
В смесительных теплообменниках передача теплоты от горячего к холодному теплоносителю происходит при непосредственном контакте и смешении обоих теплоносителей. Смесительный теплообменник целесообразно использовать для теплоносителей, которые либо легко разделить после смешения (например, вода и воздух), либо перемешать (например, пар и вода).
Теплообменные аппараты могут иметь самое разнообразное назначение – паровые котлы, конденсаторы, пароперегреватели, воздухонагреватели, радиаторы и т.д. Теплообменные аппараты в большинстве случаев значительно отличаются друг от друга как по своим формам и размерам, так и по применяемым в них рабочим телам. Несмотря на большое разнообразие теплообменных аппаратов, основные положения теплового расчета для них остаются общими.
2.2 МЕТОДИКА ТЕПЛОВОГО РАСЧЕТА РЕКУПЕРАТИВНОГО ТЕПЛООБМЕННОГО АППАРАТА
Различают конструктивный и поверочный тепловые расчеты теплообменного аппарата.
Цель конструктивного расчета состоит в определении величины поверхности теплообмена по известному количеству передаваемой теплоты и температурам теплоносителей на входе и выходе аппарата.
|
На рис. 3 изображены примеры графиков изменения температур теплоносителей по длине прямоточного (а) и противоточного (б) теплообменников. Индексами 1 и 2 обозначены параметры соответственно горячего и холодного теплоносителей, одним ( ‘ ) и двумя ( “ ) штрихами – их температуры соответственно на входе и выходе аппарата.
2.2.1 Конструктивный тепловой расчет теплообменного аппарата
Основными уравнениями при расчете теплообменника являются уравнение теплового баланса и уравнение теплопередачи.
Уравнение теплового баланса [1]
, (2.1)
или
, (2.2)
где Q – полезный тепловой поток, Вт;
G1, G2 – массовый расход соответственно горячего и холодного теплоносителей, кг/с, ;
- средние массовые теплоемкости теплоносителей в интервале температур от t’ до t”, Дж/(кг∙К);
η – коэффициент использования теплоты;
w – скорость теплоносителя, м/с;
f – сечение, м2;
ρ – плотность, кг/ м2;
- изменение температуры горячего и холодного теплоносителя по длине аппарата.
Уравнение теплопередачи
, (2.3)
где k и Δt – коэффициент теплопередачи, Вт/( м2∙K) и средний температурный напор для всего теплообменного аппарата, К;
F – поверхность теплообмена, м2.
При конструктивном расчете повехность теплообмена определяется из уравнения теплопередачи (2.3)
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.