Теория подобия в задачах литейной гидравлики, страница 2

.

То есть в этом случае  не является критерием подобия, тем более определяющим.

         В некоторых задачах величина перепада давления не связана однозначно с величиной скорости в любой точке потока. В этом случае  число Эйлера не зависит от других критериев подобия, и сам приобретает статус критерия подобия, соблюдение равенства которого для наличия факта подобия обязательно. Такими случаями являются, к примеру, течения в лопаточных машинах (компрессоры, турбины, насосы). Например, в проточной части гидротурбины величина перепада давления задана разностью уровня воды на верхнем и нижнем барьерах. Скорость потока в любой точке будет определяться не только числом , но и числом .

         Число Струхаля характеризует составляющие инерционных сил, зависящих от времени и играют важную роль во всех случаях присутствия нестационарности процессов течения. При этом можно ввести в рассмотрение два случая:

1.  нестационарность движения задана граничными условиями (винт, колесо турбины, компрессора, насосы и т.д.);

2.   нестационарность как следствие обтекания тел стационарным потоком.

Число Струхаля, очевидно, будет играть важную роль как критерий подобия в первом случае, ибо однозначно определяет суть протекающего процесса. При вращении колес лопаточных машин, винтов воздушных и судовых машин за характерное принимается время, определяемое частотой вращения  или периодом , за характерный линейный размер диаметр колеса, винта . Тогда число Струхаля определяет величину известную как относительная поступь винта

.

Для судовых винтов  лежит в пределах .

Во втором случае число Струхаля является функцией числа .

ЛЕКЦИЯ 18

Теория подобия в задачах литейной гидравлики

18.1. Оценка допустимой степени турбулентности потока расплава в каналах формы

         Выбор режима заливки литейных форм алюминиевыми и магниевыми сплавами во многом определяется химической активностью к кислороду этих сравнительно мягких сплавов. Турбулентное течение приводит к механическому замеживанию оксидов, воздуха и газов внутри расплава. Это приводит к образованию пены в потоке и как следствие к дефекту в виде неметаллических включений мягких сплавов. Этот дефект литейщики называют вторичным шлаком. Экспериментально установлено, что образование вторичных шлаков в потоке алюминиевых и магниевых сплавов происходит при числах Рейнольдса, превышающих максимально характерную допустимую скорость потока, приводящую к образованию шлака

 > ,

где  – скорость потока;  – характерный размер отливки;  – максимально допустимая скорость потока, превышение которой приводит к образованию шлака;  – коэффициент кинематической вязкости расплава.

         При  скорость такова, что режим течения носит ламинарный и переходный характеры, при которых возмущения на поверхности не приводят к разрыву оксидной пленки, а следовательно, к захвату воздуха и газов. С ростом числа  растет интенсивность возмущений в поверхностном слое при  происходит разрыв оксидной пленки с образованием плены. При этом плена на поверхности потока непрерывно обновляется разрываясь. Это приводит к росту контакта металла с воздухом, газами и влагой формы, что в свою очередь повышает загрязненность отливки вторичными шлаковыми включениями и вызывает так называемый дефект пористости в отливках.