Радиографический контроль
Контроль проникающим излучением используют для выявления пор, трещин и раковин внутри покрытия. Рентгеновские и гамма-лучи проходят через испытуемый материал и попадают на фотопленку. Интенсивность рентгеновского и гамма-излучения изменяется при прохождении их через материал. Любые поры, трещины или изменения толщины будут регистрироваться на фотопленке, и при соответствующей расшифровке пленки можно установить положение всех внутренних дефектов.
Радиографический контроль сравнительно дорог и протекает медленно. Необходима защита оператора от облучения. Трудно анализировать изделия сложной формы.
Токовихревой контроль
Поверхностные и внутренние дефекты можно определять с помощью вихревых токов, индуцируемых в изделии внесением его в электромагнитное поле индуктора. При перемещении детали в индукторе, или индуктора относительно детали индуцированные вихревые токи взаимодействуют с индуктором и меняют его полное сопротивление. Индуцированный ток в образце зависит от наличия дефектов проводимости образца, а также его твердости и размера.
Применяя соответствующие индуктивности и частоты или их сочетание, можно выявить дефекты. Контроль вихревыми токами нецелесообразен, если конфигурация изделия сложна. Контроль этого вида непригоден для выявления дефектов на кромках и углах; в некоторых случаях от неровной поверхности могут поступать те же сигналы, что и от дефекта.
Ультразвуковой контроль
При ультразвуковом контроле ультразвук пропускают через материал и измеряют изменения звукового поля, вызванные дефектами в материале. Энергия, отраженная от дефектов в образце, воспринимается преобразователем, который превращает ее в электрический сигнал и подается на осциллограф.
В зависимости от размеров и формы образца для ультразвукового контроля используют продольные, поперечные или поверхностные волны. Продольные волны распространяются в испытуемом материал прямолинейно до тех пор, пока они не встретятся с границей или несплошностью. Первая граница, с которой встречается входящая волна, -граница между преобразователем и изделием. Часть энергии отражается от границы, и на экране осциллографа появляется первичный импульс. Остальная энергии проходит через материал до встречи с дефектом или противоположной поверхностью, положение дефекта определяется измерением расстояния между сигналом от дефекта и от передней и задней поверхностей .
Несплошности могут быть расположены так, что их можно определить, направляя излучение перпендикулярно к поверхности. В этом случае звуковой луч вводится под углом к поверхности материала для создания поперечных волн.
Если угол входа достаточно увеличить, то образуются поверхностные волны. Эти волны проходят по контуру образца и могут обнаруживать дефекты близ его поверхности.
Таблица 5
№ п/п |
Метод контроля |
Цель и пригодность испытания |
1 |
Визуальное наблюдение |
Выявление поверхностных дефектов покрытия визуальным осмотром |
2 |
Капиллярный контроль (цветной и люминесцентный) |
Выявление поверхностных трещин, пор и аналогичных дефектов покрытия |
3 |
Радиографический контроль |
Выявление внутренних дефектов покрытия |
4 |
Электромагнитный контроль |
Выявление пор и трещин, метод не пригоден для выявления дефектов в углах и кромках |
5 |
Ультразвуковой контроль |
Выявление поверхностных и внутренних дефектов, метод не пригоден для тонких слоев и для выявления дефектов в углах и кромках |
12. Термообработка
Покрытие имеет плохое сцепление с основным металлом, поэтому термообработка предназначена для улучшения прочности сцепления покрытия с основой и контроля прочности сцепления.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.