Методы переменных состояния в теории автоматического управления. Современная теория автоматического управления

Страницы работы

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.

Фрагмент текста работы

Характеристическое уравнение располагается в последней строке.

9

Структурная схема для управляемой канонической формы уравнений состояния

Здесь переменные состояния – фазовые координаты.

10

Другая форма: в правой части уравнения содержатся производные от входного воздействия

11

Введем переменные состояния:

Здесь координаты состояния xi – абстрактные переменные.

12

Этим уравнениям соответствует структура:

13

Возможно другое представление:

14

Структурная схема может быть преобразована к виду:

15

Тогда матрицы A, B, C в уравнениях состояния будут:

Это - наблюдаемая каноническая форма уравнений состояния.

Таким образом, переход от передаточной функции к описанию в переменных состояния является неоднозначным.

16

Другие канонические формы уравнений состояния.

17

Второй способ.

В двух последних формах матрица А – диагональная.

18

  • Преимущества структурной модели :
  • наглядное представление понятия "состояние систем",
  • однозначно представляется структура взаимодействий
  • между переменными в виде системы с обратными связями,
  • структурные модели полезны при моделировании САУ
  • на аналоговых или цифровых вычислительных машинах.

19

Пример получения уравнений состояния

Уравнения состояния:

20

П р и м е р. Система описывается дифференциальным уравнением Составим уравнения состояния и структурную схему

21

Свойства объектов и систем управления. Управляемость .

Определение. Система полностью управляема, если она может быть переведена из любого начального состояния x(0) в начало координат (0, 0,…,0) под действием управления u(t) за конечное время. Теорема Калмана об управляемости. Состояние непрерывной системы управляемо, если и только если ранг матрицы NУ = [B | AB | A2B | ... | An-1B] равен размерности пространства состояний n.

22

Пример 1. Проверим, управляема ли система:

23

Пример 2. Также проверим управляемость системы:

24

Пример 3.

Т.к. rangNy = 1 , система управляема неполностью. Порядок управляемой части равен 1.

В такой системе есть “висячая” часть на входе.

25

В случае представления объекта управления моделью типа “вход - выход” условием его управляемости является отсутствие общих корней полиномов А(p) и B(p): Т.е. система управляема, если алгебраические уравнения A(p)=a0pn+a1pn-1+…+an = 0, B(p)=b0pm+b1pm-1+…+bm = 0 не имеют общих корней.

Рассмотрим пример.

26

Пример 2. Определим управляемость системы, имеющей передаточную функцию

Прямой расчет корней числителя и знаменателя дает результаты, приведенные в табл.

Таким образом, числитель и знаменатель передаточной функции W(p) имеют два общих корня (-1 -j1.414) и ( -1+j 1.414). Значит, система не управляема. Изменение значений корней для этих пар в числителе или знаменателе переведет систему в ранг управляемых.

27

Наблюдаемость

  • Для осуществления управления необходимо иметь информацию о текущем состоянии системы, т.е. о значениях вектора состояния x(t) в каждый момент времени.
  • Однако некоторые из переменных состояния являются абстрактными, не имеют физических аналогов в реальной системе или же не могут быть измерены. Измеряемыми и наблюдаемыми являются физические выходные переменные y(t).
  • Таким образом, возникает вопрос: можно ли определить вектор состояния по измеряемому вектору выхода и вектору входа?

28

Наблюдаемость

  • Определение. Система называется полностью наблюдаемой, если по результатам измерения входных u(t) и выходных y(t) переменных можно однозначно определить все составляющие вектора x(t) на конечном интервале времени.
  • Теорема Калмана о наблюдаемости. Система наблюдаема, если и только если ранг матрицы
  • Nн = [CT | ATCT | (AT)2CT | ... | (AT)n-1CT].
  • равен размерности пространства состояний.

Упражнение.

29

Пример 2.

  • Рассмотрим систему:

30

31

Изменение базиса в уравнениях состояния

32

Пример (упражнение)

33

О синтезе системы

  • Синтез системы - это направленный расчет, цель
  • которого :
  • построение рациональной структуры системы;
  • нахождение оптимальных значений параметров отдельных звеньев.
  • Качество управления можно описать двумя способами.
  • Первый способ предусматривает или непосредственное задание динамических характеристик выходных координат системы при типовых воздействиях, или задание совокупности прямых и косвенных показателей качества (значение перерегулирования, времени регулирования, статической ошибки, частоты среза, полосы пропускания и т.д.).
  • Второй способ основан на введении некоторого обобщенного функционала, определяемого всеми переменными системы управления u(t), x(t), y(t).
  • В теории линейных систем управления широко используются оба указанных способа.

34

  • Если передаточная функция системы не имеет нулей, то при выборе ее желаемого полинома D(p) можно руководствоваться стандартными формами (фильтрамиЧебышева, Баттерворта и др.)
  • Стандартные формы определяют коэффициенты характеристического полинома , обеспечивающие в системе переходные и частотные характеристики с известными показателями качества.
  • Если же система характеризуется наличием нулей, стандартные формы могут служить в качестве исходного материала для поиска своего оптимального расположения корней.
  • Одним из основных методов проектирования детерминированных систем управления в пространстве состояний является метод расположения полюсов.

35

Распределение полюсов системы управления

  • Рассмотрим систему с одним входом и одним выходом.
  • Требуемое качество процессов может быть достигнуто заданием распределения полюсов замкнутой системы на комплексной плоскости.
  • Для системы
  • полюса системы - это собственные значения матрицы А или корни ее характеристического уравнения

36

37

  • Если уравнения объекта заданы в нормальной форме (Фробениуса), то матрица обратных связей по состоянию
  • Покажем это:

38

Пример

  • Задана система:

Нормальная форма матрицы А:

39

Пусть желаемые полюсы : λ1= -3, λ2= -2 Желаемый характеристический полином: φ=(λ+3)(λ+1)= λ 2+4 λ +3; α1=4, α2=3. Тогда k1 = a2 - α2 = 2 - 3 = -1, k2 = a1- α1 = -3 - 4 = -7. K = |-1 -7| Следовательно: v = u - x1 -7x2 Вычислив матрицу перехода P от исходной к нормальной форме можно получить матрицу обратной связи для исходного представления

Похожие материалы

Информация о работе

Уважаемые коллеги! Предлагаем вам разработку программного обеспечения под ключ.

Опытные программисты сделают для вас мобильное приложение, нейронную сеть, систему искусственного интеллекта, SaaS-сервис, производственную систему, внедрят или разработают ERP/CRM, запустят стартап.

Сферы - промышленность, ритейл, производственные компании, стартапы, финансы и другие направления.

Языки программирования: Java, PHP, Ruby, C++, .NET, Python, Go, Kotlin, Swift, React Native, Flutter и многие другие.

Всегда на связи. Соблюдаем сроки. Предложим адекватную конкурентную цену.

Заходите к нам на сайт и пишите, с удовольствием вам во всем поможем.