Санкт-Петербургский Государственный Технологический
Университет Растительных Полимеров
Кафедра АТЭП
Лабораторная работа
Воспроизведение разгонной кривой по импульсной кривой и аппроксимация разгонной кривой методом моментов переходной функции.
Выполнил: студент гр.542
Проверил:
2005
Вариант 72
1. Тип объекта –статический, так как состояние переходного процесса
после импульсного воздействия, возвращается в установившееся
значение.
|
|||||
Объект
% см
2. Структура объекта –реальное интегрирущее звено с запаздыванием
3. Приближенная оценка параметра объекта:
m0 = 62.5% m∞ = 52.5%
∆m∞ = m∞ - m0 = 52.5 – 62.5 = - 10(%)
H0 = 125 см H∞ = 101 см
∆H∞ = H∞ - H0 =101 – 125 = -24
|
|
|
|||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
Определяем коэффициент передачи сигнала:
К= ∆H∞/∆m∞ = 24 /10 = 2.4 [см/%]
Постоянная времени Т при t1= T + τ и t2= 2T + τ
Для нахождения Т рассмотрим две точки t1 и t2:
∆H (t1) = H0 + 0,63*∆H∞ =125 - 0,63*24 = 109,28 [см]
∆H (t2) = H0 + 0,87*∆H∞ =125 - 0,87*24 = 104,12 [см]
Тогда:
t1= 280 сек и t2= 330 сек
Запаздывание определяем визуально из графика: τ=20 сек.
t1 + t2 = 3T + 2τ
Отсюда
Т= (t1 + t2 - 2τ)/3= (280 + 330 - 2*140)/3 = 176,67 мин
В итоге получаем:
2.4 * e (-40*P)
W(P) = ---------------------1 + 176.67*P
1.
|
|||
|
2. Оптимальная модель имеет следующие параметры:
Передаточная функция вида:
K
W(P) = -------------------------- .
1 + 2*Ksi*T*P + T**2*P**2
дисперсия адекватности- σ2ад = 0.012301
3.Выборочная модель имеет следующие параметры:
Передаточная функция:
K
W(P) = --------- .
1 + T*P
дисперсия адекватности- σ2ад = 0.014213
4. Вывод:
После программного расчета сделан вывод о том, что значение дисперсии адекватности в оптимальной и выборочной модели приблизительно одинаковые, но оптимальная модель более соответствует объекту, поэтому выбираем оптимальную модель.
АППРОКСИМАЦИЯ РАЗГОННОЙ КРИВОЙ
МЕТОДОМ МОМЕНТОВ ПЕРЕХОДНОЙ ФУНКЦИИ
21.12.05
ПАРАМЕТРЫ ВХОДНОГО ВОЗДЕЙСТВИЯ :
ЗНАЧЕНИЕ ВХОДНОГО ВОЗДЕЙСТВИЯ ДО ЭКСПЕРИМЕНТА = 62.500
ЗНАЧЕНИЕ ВХОДНОГО ВОЗДЕЙСТВИЯ В ИМПУЛЬСЕ = 52.500
ДЛИТЕЛЬНОСТЬ ИМПУЛЬСА = 400.000
ПАРАМЕТРЫ ВЫХОДНОГО СИГНАЛА ОБЪЕКТА :
СРЕДНЕЕ ЗНАЧЕНИЕ ВЫХОДНОГО СИГНАЛА ДО ОПЫТА = 125.000
УСТАНОВ.СРЕДН.ЗНАЧ.ВЫХОДНОГО СИГНАЛА ПОСЛЕ ОПЫТА = 101.000
ШАГ ДИСКРЕТНОСТИ ПО ВРЕМЕНИ = 20.000
ЧИСЛО ТОЧЕК КРИВОЙ РАЗГОНА = 56
КРИВАЯ РАЗГОНА
Номер точки Значение кривой разгона
1 125.000
2 124.500
3 124.500
4 124.500
5 124.500
6 123.500
7 122.500
8 121.000
9 120.000
10 119.000
11 117.500
12 116.500
13 114.000
14 115.000
15 110.000
16 106.500
17 102.500
18 101.500
19 98.500
20 97.500
21 97.000
22 97.000
23 97.000
24 97.500
25 98.000
26 98.500
27 100.000
28 101.000
29 103.000
30 105.000
31 106.500
32 109.000
33 110.500
34 112.500
35 112.500
36 118.000
37 121.500
38 123.500
39 124.500
40 126.500
41 128.000
42 128.000
43 128.000
44 128.000
45 128.000
46 128.000
47 128.000
48 127.500
49 126.500
50 126.000
51 125.000
52 124.500
53 124.500
54 124.000
55 124.000
56 124.000
**********************************************************************
МОДЕЛЬ С М И Н И М А Л Ь Н Ы М
ЗНАЧЕНИЕМ ДИСПЕРСИИ АДЕКВАТНОСТИ
ПЕРЕДАТОЧНАЯ ФУНКЦИЯ АППРОКСИМИРУЮЩЕЙ МОДЕЛИ
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.