Задача обучениe на работе.
Составить математическую модель процесса, который мы условно будем называть обучение на работе.
Цель этого примера состоит в разъяснении того, что модель линейного программирования может охватывать линию разнообразных условий, которые так характерны для практических применений.
Задача.
Согласно контракту завод должен произвести 1200 единиц товара "C" ,причем расписание поставок rt .указано в таблице 4.
Конец недели |
1 |
2 |
3 |
4 |
5 |
Количество единиц |
r1=100 |
r2=200 |
r3=300 |
r4=400 |
r5=200 |
Какой план найма, увольнения, производства и хранения должен принять производитель, чтобы минимизировать затраты выполнения контракта при следующих условиях:
Выбираем в качестве единицы времени период равный одной неделе.
В начале каждой недели мы определили число рабочих и единиц товара "C" необходимое для того, чтобы осуществить технологический процесс в течении этой недели.
В соответствии с этим каждый из 6-ти моментов времени t=0,1,2,3,4,5 должны быть составлены уравнения материального баланса для следующих двух ингредиентов.
Ингредиент |
Обозначение |
Рабочие |
Wt |
Товар |
Lt |
К этим уравнениям добавятся уравнение стоимости для стоимостного ингредиента в течении каждого из 5 недельных периодов будут осуществляться следующие технологические процессы:
Задача состоит в том, чтобы решить какой план найма, увольнения производства и хранения должен применять производитель чтобы минимизировать затраты выполнения контракта.
Построение моделей начнем с ТП состоящего в обучении учеников рабочим в течение недели.
Схему этого процесса представим на рисунке.
В качестве затрат, этот ТП требует два ингредиента: один рабочий в момент времени t и n=600 д.е. зарплата рабочего и L-1 его учеников в процессе обучения в течении 1й недели. В качестве выпуска он производит 1 ингредиент обученных рабочих включая себя в момент времени t+1.
Схема технологического процесса производство Рt.
В качестве затрат, этот технологический процесс требует два ингредиента: один рабочий в момент времени t и m=100д.е. зарплата рабочего в неделю независимо от его занятости.
В качестве выпуска он производит 2 ингредиента: один рабочий в момент времени t+1 и единица товара произведенная в момент времени t+1.
Схема технологического процесса простоя It.
В качестве затрат, этот ТП требует два ингредиента: один рабочий в момент времени t и m1=100 д.е. зарплата рабочего в неделю независимо от его занятости. В качестве выпуска он производит ингредиент: один рабочий в момент времени t+1.
Схема технологического процесса увольнение Ft.
В качестве затрат, этот ТП требует два ингредиента: один рабочий в момент времени t и стоимость увольнение одного рабочего (выходное пособие) f . В качестве выпуска он ничего не производит.
Схема технологического процесса хранения St.
В качестве затрат, этот ТП требует два ингредиента: количество единиц товара в момент времени t, а также любая единица продукции, произведенная раньше срока требует хранения. Расходы по которым составляют S=10д.е. в неделю. В качестве выпуска он производит один ингредиент -количество единиц товара в момент времени t.
Схема технологического процесса выплата штрафа Dt.
В качестве затрат, этот ТП требует два ингредиента: количество единиц товара в момент времени t, а также каждая единица продукции, не поставленная в срок влечет штраф за каждую неделю, до тех пор пока поставка не будет выполнена. В качестве выпуска он производит один ингредиент -количество единиц товара в момент времени t. Выплата штрафа это технологический процесс, состоящий в том, что дефицит временно покрывается заимствованием на рынке 1 единицы товара, которая должна быть возвращена на следующей неделе по цене Р д.е. Штраф на пятой неделе опускается в виде условия в), которое утверждает, что все поставки должны быть выполнены к концу 5-й недели. На 6- й неделе должно быть применено увольнение Рt, для того чтобы избавиться и от всех рабочих и завершить программу.
Шаг 1. Построение модели.
Перечень технологических процессов.
Шаг 2.
Перечень ингредиентов.
Шаг 3.
Расположим коэффициенты затрат выпуска в форме таблицы т.е. составим модель обучения на работе.
Каждому технологическому процессу соответствует вертикальный столбец, а каждому ингредиенту горизонтальная строка. На пересечении каждого столбца и каждой строки помещен коэффициент затрат выпуска со знаком того ингредиента, который требуется единичной интенсивностью технологического процесса.
Шаг 4. Экзогенные потоки поступающие в систему и требуемые от системы как целого.
Денежные затраты пока не определены и будут обозначаться Z. Они должны быть как можно меньше. Добавим к таблице экзогенные потоки. Дополним эту таблицу обозначением интенсивности каждого технологического процесса в виде Х соответствующего номера.
Шаг 5. Модель в табличной форме готова.
Первая неделя
1Х11+1Х12+1Х13+1Х14 =20
+1Х15 -1Х16 =10
Вторая неделя
-6Х11-1Х12-1Х13 ……………. +1Х21+1Х22+1Х23+1Х24 =0
8Х12 -1Х15+Х16 +1Х25-1Х26 =100
Третья неделя
-6Х21-1Х22-1Х23 ……………. +1Х31+1Х32+1Х33+1Х34 =0
8Х22……………. -1Х25+1Х26 +1Х35-1Х36 =200
Четвертая неделя
-6Х31-1Х32-1Х33 ……………. +1Х41+1Х42+1Х43+1Х44 =0
8Х32……………. -1Х35+1Х36 +1Х45-1Х46 =300
Пятая неделя
-6Х41-1Х42-1Х43 ……………. +1Х51+1Х52+1Х53+1Х54 =0
8Х42……………. -1Х45+1Х46 +1Х55-1Х56 =400
Шестая неделя
-6Х51-1Х52-1Х53 ……………. +1Х64 =0
8Х52……………. -1Х55+1Х56 +1Х64 =200
600Х11+100Х12+100Х13+100Х14+10Х15+30Х16+
600Х21+100Х22+100Х23+100Х24+10Х25+30Х26+
600Х31+100Х32+100Х33+100Х34+10Х35+30Х36+
600Х41+100Х42+100Х43+100Х44+10Х45+30Х46+
600Х51+100Х52+100Х53+100Х54+10Х55+30Х56+
100Х64 =Z(min).
Таким образом модель состоит из следующих частей:
Для нашего конкретного примера задача состоит в том, чтобы определить интенсивности технологических процессов (Х1, Х2,,,,, Х6) которые
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.