Используя формулу производной частного, получаем
.
Далее, используя формулу производной сложной функции и соответствующие табличные производные, получаем:
=
=
=
=
.
Задача. Найти
, если
.
По формуле дифференцирования частного имеем:
Приведем решение еще одного примера, все промежуточные выкладки в котором сделаны в уме.
Задача. Найти
, если
.
.
Задача 1г.
Для решения подобных задач используется метод логарифмического дифференцирования. Суть этого метода состоит в использовании равенства:
.
Подобный прием применяется
для нахождения производных функций вида
,
а так же функций представляющих собой произведение большого числа множителей.
Схему этого метода изложим сначала на примере.
Задача. Найти
, если
(1)
Данная функция является сложной показательной функцией. Для ее дифференцирования используем логарифмическую производную. Опишем процесс нахождения производной сложной показательной функции.
Прологарифмируем равенство (1):
Затем запишем правую часть
равенства в виде произведения, применив свойство логарифмической функции:
Продифференцируем получившееся
равенство:
Выразим из последнего
равенства искомую производную
:
И, наконец, подставим вместо
функции
ее выражение через
:
Задача. Найти
, если
.
Прологарифмируем данное выражение:
.
Возьмем производную от правой и левой части данного соотношения:
.
Тогда
×
.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.