Электрофизические свойства полупроводников. Энергетические диаграммы полупроводников, страница 9

 Особую роль играет зависимость подвижности от напряженности поля, так как при этом зависимость между скоростью движения носителей заряда и напряженностью поля становится нелинейной (рис. 1.15). В слабых электрических полях (e <103В/см) носители заряда на длине свободного пробега приобретают относительно малую энергию, не превышающую тепловую энергию . При этом результирующая скорость носителей заряда примерно равна тепловой. При таких условиях подвижность сохраняется постоянной, а скорость дрейфа линейно нарастает с ростом напряженности поля. При напряженности поля более 103 В/см скорость дрейфа становится соизмеримой со скоростью теплового движения, вследствие чего увеличивается результирующая скорость движения носителей заряда, происходит как бы разогрев электронно-дырочного газа. Такие носители заряда, энергия которых сравнима или превышает тепловую энергию, 2/3 КТ называются горячими. В этих условиях с увеличением напряженности поля уменьшается длина свободного пробега, вследствие чего подвижность носителей заряда уменьшается обратно пропорционально , а дрейфовая скорость возрастает прямо пропорционально . Если напряженность поля превышает критическое значение eкр» 104 В/см , то с ростом e подвижность уменьшается обратно пропорционально напряженности поля, а дрейфовая скорость сохраняется неизменной и равной величине uнас» 107 см/с.

Ток диффузии

Ток диффузии возникает в результате неравномерного распределения концентрации носителей заряда. Плотность тока диффузии определяется количеством диффундирующих частиц в единицу времени через единичную площадку, перпендикулярную направлению диффузии (формулы 1.26 и1.27). Умножая плотность потока на отрицательный заряд электрона или положительный заряд дырки получаем соотношения для диффузионных токов электронов и дырок:

 ; (1.44)

, (1.45)

где D- коэффициент диффузии электронов, равный 99 см2/с для германия и 34 см2/с для кремния, D- коэффициент диффузии дырок, равный 34 см2/с для германия и 13 см2/с для кремния.

Параметры диффузионного и дрейфового движения связаны между собой соотношениями Эйнштейна:

Dn=uT· mn; Dp =uT· mp . (1.46)

Распределение токов в полупроводнике

 В целях наглядности рассмотрим распределение токов при инжекции электронов в дырочный полупроводник (рис. 1.16,а), когда в нем возникает внутреннее электрическое поле и распределение концентрации электронов и дырок принимает вид, показанный на рис. 1.16,б. При подобном распределении концентрации электронов и дырок возникают токи диффузии, определяемые уравнениями (1.44) и (1.45), а наличие внутреннего электрического поля ведет к появлению токов проводимости, определяемых уравнениями (1.38) и (1.39). Током проводимости электронов, в виду их невысокой концентрации, можно пренебречь. В результате, распределение токов принимает вид, показанный на рис. 1.16,в. На том же рисунке показан результирующий дырочный ток:

. Физически этот ток обусловлен притяжением дырок инжектированными электронами, в результате чего образуются встречные потоки электронов и дырок, которые, встречаясь друг с другом, рекомбинируют. Поэтому дырочный ток называют током рекомбинации. В дальнейшем можно рассматривать распределение только двух токов, показанных на рис. 1.16,г. Внутреннее электрическое поле в полупроводнике возникает не только при инжекции (или экстракции) неосновных носителей заряда, но и при введении (или выведении) основных носителей заряда. Так, если через сечение xвыводится некоторое количество дырок, то отрицательные заряды акцепторов окажутся не скомпенсированными и возникнет внутреннее поле, в результате чего появится дополнительный ток проводимости и распределение токов примет вид, показанный на рис. 1.16,д.

При экстракции электронов из дырочного полупроводника (рис. 1.17) ток диффузии электронов изменяет свое направление. При этом также возникает внутреннее электрическое поле, сдвигающее дырки в направлении оси x. Ток, создаваемый движением дырок, называется током генерации.  Такие же процессы происходят и в электронном полупроводнике с той лишь разницей, что электроны и дырки меняются ролями.