Электрофизические свойства полупроводников. Энергетические диаграммы полупроводников, страница 2

Электронный полупроводник

Электронным полупроводником или полупроводником типа n ( от латинского negative - отрицательный) называется полупроводник, в кристаллической решетке которого (рис .1.3)помимо основных (четырехвалент-ных) атомов содержатся примесные пятивалентные атомы, называемые донорами. В такой кристаллической решетке четыре валентных электрона примесного атома заняты в ковалентных связях, а пятый (“лишний”) электрон не может вступить в нормальную ковалентную связь и легко отделяется от примесного атома, становясь свободным носителем заряда. При этом примесный атом превращается в положительный ион. При комнатной температуре практически все примесные атомы оказываются ионизированными. Наряду с ионизацией примесных атомов в электронном полупроводнике происходит тепловая генерация, в результате которой образуются свободные электроны и дырки, однако концентрация возникающих в результате генерации электронов и дырок значительно меньше концентрации свободных электронов, образующихся при ионизации примесных атомов, т.к. энергия, необходимая для разрыва ковалентных связей, существенно больше энергии, затрачиваемой на ионизацию примесных атомов.Концентрация электронов в электронном полупроводнике обозначается nn, а концентрация дырок - pn. Электроны в этом случае являются основными носителями заряда, а дырки - неосновными.

Дырочный полупроводник

Дырочным полупроводником или полупроводником типа p ( от латинского positive - положительный) называется полупроводник, в кристаллической решетке которого (рис. 1.4) содержатся примесные трехвалентные атомы, называемые акцепторами. В такой кристаллической решетке одна из ковалентных связей остается незаполненной. Свободную связь примесного атома может заполнить электрон, покинувший одну из соседних связей. При этом примесный атом превращается в отрицательный ион, а на том месте, откуда ушел электрон, возникает дырка. В дырочном полупроводнике, также как и в электронном, происходит тепловая генерация носителей заряда, но их концентрация во много раз меньше концентрации дырок, образующихся в результате ионизации акцепторов. Концентрация дырок в дырочном полупроводнике обозначается pp, они являются основными носителями заряда, а концентрация электронов обозначается np, они являются неосновными носителями заряда.

1.2. Энергетические диаграммы полупроводников

Согласно представлениям квантовой физики электроны в атоме могут принимать строго определенные значения энергии или, как говорят, занимать определенные энергетические уровни. При этом, согласно принципу Паули, в одном и том же энергетическом состоянии не могут находиться одновременно два электрона. Твердое тело, каковым является полупроводниковый кристалл, состоит из множества атомов, сильно взаимодействующих друг с другом, благодаря малым межатомным расстояниям. Поэтому вместо совокупности разрешенных дискретных энергетических уровней, свойственных отдельному атому, твердое тело характеризуется совокупностью разрешенных энергетических зон, состоящих из большого числа близко расположенных энергетических уровней. Разрешенные энергетические зоны разделены интервалами энергий, которыми электроны не могут обладать и которые называются запрещенными зонами. При температуре абсолютного нуля электроны заполняют несколько нижних энергетических зон. Верхняя из заполненных электронами разрешенных зон называется валентной зоной, а следующая за ней незаполненная зона называется зоной проводимости. У полупроводников валентная зона и зона проводимости разделены запрещенной зоной. При нагреве вещества электронам сообщается дополнительная энергия и они переходят с энергетических уровней валентной зоны на более высокие энергетические уровни зоны проводимости. В проводникахдля совершения таких переходов требуется незначительная энергия, поэтому проводники характеризуются высокой концентрацией свободных электронов (порядка 1022 см-3). В полупроводниках для того, чтобы электроны смогли перейти из валентной зоны в зону проводимости, им должна быть сообщена энергия не менее ширины запрещенной зоны. Это и есть та энергия , которая необходима для разрыва ковалентных связей. На рис. 1.5 представлены энергетические диаграммы собственного электронного и дырочного полупроводников, на которых через EC обозначена нижняя граница зоны проводимости, а через EV - верхняя граница валентной зоны. Ширина запрещенной зоны DEз= Ec- Ev. В кремнии она равна 1,1 эВ, в германии - 0,7 эВ.