Оптимизация
функции
.
1.
Оптимизация ![]()
Рассмотрим
нулевое подмножество функции
.
Оно содержит следующие конъюнкции: 12346 и 13456. Очевидно, что конъюнкция
меньшего ранга, которая не будет покрывать нулевое подмножество функции, - 25.
Получаем
.
2.
Оптимизация ![]()
Так как функция содержит элементарные конъюнкции только пятого ранга, ее оптимизация возможна за счет элементарных конъюнкций четвертого и меньших рангов. Рассмотрим элементарные конъюнкции четвертого ранга:
|
№ |
Конъюнкция |
Покрываемый набор из |
Количество покрываемых импликант |
Множество импликант |
|
1 |
1245 |
- |
0 |
- |
|
2 |
1256 |
- |
0 |
- |
|
3 |
2345 |
- |
0 |
- |
|
4 |
2356 |
- |
0 |
- |
|
5 |
2456 |
- |
0 |
- |
Следовательно,
оптимизация
невозможна.
Получаем
.
3.
Оптимизация ![]()
Так как функция содержит элементарные конъюнкции только третьего ранга, то ее оптимизация возможна за счет элементарных конъюнкций второго и первого ранга. Рассмотрим элементарные конъюнкции второго ранга:
|
№ |
Конъюнкция |
Покрываемый набор из |
Количество покрываемых импликант |
Множество импликант |
|
1 |
12 |
- |
2 |
+ |
|
2 |
13 |
- |
1 |
+ |
|
3 |
14 |
- |
2 |
+ |
|
4 |
16 |
- |
1 |
+ |
|
5 |
23 |
- |
1 |
+ |
|
6 |
25 |
- |
2 |
+ |
|
7 |
26 |
- |
1 |
+ |
|
8 |
34 |
- |
1 |
+ |
|
9 |
35 |
- |
1 |
+ |
|
10 |
36 |
- |
0 |
- |
|
11 |
45 |
- |
2 |
+ |
|
12 |
46 |
- |
1 |
+ |
|
13 |
56 |
- |
1 |
+ |
Рассмотрим элементарные конъюнкции первого ранга:
|
№ |
Конъюнкция |
Покрываемый набор из |
Количество покрываемых импликант |
Множество импликант |
|
1 |
1 |
15 |
* |
- |
|
2 |
2 |
24 |
* |
- |
|
3 |
3 |
- |
2 |
+ |
|
4 |
4 |
24 |
* |
- |
|
5 |
5 |
15 |
* |
- |
|
6 |
6 |
- |
2 |
+ |
Построим таблицу покрытия:
|
1 2 4 |
1 2 5 |
1 3 5 |
1 4 5 |
1 5 6 |
2 3 4 |
2 4 5 |
2 4 6 |
|
|
3 |
|
|
||||||
|
6 |
|
|
||||||
|
12 |
|
|
||||||
|
14 |
|
|
||||||
|
25 |
|
|
||||||
|
45 |
|
|
Конъюнкции 3 и 6 существенны. Включаем их в окончательное решение. Сокращаем таблицу покрытия.
|
1 2 4 |
1 2 5 |
1 4 5 |
2 4 5 |
||
|
12 |
|
|
A |
||
|
14 |
|
|
B |
||
|
25 |
|
|
C |
||
|
45 |
|
|
D |
![]()
Получаем две
минимальных ДНФ, любая из которых может быть выбрана в качестве оптимальной.
Произвольно выбираем
.
Получаем
.
4.
Оптимизация ![]()
Так как
функция содержит только конъюнкции второго ранга, то ее оптимизация возможна
конъюнкциями первого ранга. Но оптимизация невозможна, так как конъюнкции
первого ранга входят в нулевое подмножество функции. Получаем
.
Оптимизация
функции
.
1.
Оптимизация ![]()
Так как функция содержит только элементарную конъюнкцию шестого ранга, то ее оптимизация возможна за счет элементарных конъюнкций пятого и меньших рангов. Рассмотрим элементарные конъюнкции пятого ранга:
|
№ |
Конъюнкция |
Покрываемый набор из |
Количество покрываемых импликант |
Множество импликант |
|
1 |
12345 |
- |
1 |
+ |
|
2 |
12346 |
- |
1 |
+ |
|
3 |
12456 |
- |
1 |
+ |
|
4 |
13456 |
- |
1 |
+ |
Рассмотрим элементарные конъюнкции четвертого ранга:
|
№ |
Конъюнкция |
Покрываемый набор из |
Количество покрываемых импликант |
Множество импликант |
|
1 |
1235 |
12356 |
* |
- |
|
2 |
1236 |
12356 |
* |
- |
|
3 |
1346 |
- |
1 |
+ |
|
4 |
1456 |
1456 |
* |
- |
|
5 |
2346 |
23456 |
* |
- |
|
6 |
2456 |
23456 |
* |
- |
|
7 |
3456 |
23456 |
* |
- |
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.