(15.25)
и осевое усилие на шестерне, равное радиальному на колесе:
. (15.26)
Нормальная сила:
. (15.27)
Приведенные формулы относятся к прямозубому зацеплению. Для не-прямозубых колёс формулы расчёта усилий приведены в учебнике [6].
Рис. 15.8. Силы в конической передаче
15.5. Особенности расчётов на прочность
А) Контактная прочность. Расчёт ведут по формуле Герца:
.
Приведенный радиус кривизны определяют по средним диаметрам эквивалентных колёс:
.
Учитывая связь тригонометрических функций, находят:
; (15.28)
. (15.29)
После подстановки и преобразований:
. (15.30)
После преобразований формула Герца примет вид, аналогичный формуле (14.33) для цилиндрических зубчатых передач:
, (15.31)
где – опытный коэффициент; для прямозубых передач = 0,85; для непрямозубых колес его определяют по эмпирическим формулам [11]; в среднем нагрузочная способность передач с круговыми зубьями в 1,4…1,5 раза выше прямозубых. После подстановки численных данных и упрощений формула (15.31) примет форму, удобную для проверочного расчёта:
(15.32)
Для проектного расчёта формулу (15.32) решают относительно :
. (15.33)
Величину округляют до стандартной по ГОСТ 12289 или по ГОСТ 6636 (прил. 15).
Б) Изгибная прочность. Расчёт ведут по формуле, соответствующей цилиндрической передаче:
sF1 = YF1FtKFbKFn/(F·bmm) ≤[sF] , (15.34)
где – коэффициент, учитывающий особенности передач; для прямо-зубых колес = 0,85; для непрямозубых определяют по [9];
– коэффициент формы зуба, определяемый по биэквивалентному числу зубьев.
Пример 15.1. Рассчитать прямозубую коническую зубчатую передачу по следующим исходным данным: мощности на валах: Р1 = 7 кВт, Р2 = 6,65 кВт, частоты вращения валов: n1 = 480 об/мин, n2 = 152 об/мин. Недостающими данными задаться.
Решение.
Вычерчиваем кинематическую схему передачи (рис. 15. 9).
Рис. 15. 9. Кинематическая схема конической передачи
Принимаем материал шестерни сталь 30ХГС, термообработка – закалка, твёрдость 45…55HRC, колеса – сталь 40ХН, термообработка – улучшение, средняя твёрдость 250HB[9]. Допускаемые контактные напряжения шестерни и колеса принимаем по примеру 14.1: = 627 МПа,
Крутящий момент на валу колеса: Т2 = 9550·6,65/152 = 417,8 Н·м.
Передаточное число u = 480/152 = 3,16.
Принимаем 7-ю степень точности изготовления колёс. Коэффициенты нагрузки принимаем по 8-й степени точности для цилиндрических колёс: концентрации нагрузки = 1,3; динамической нагрузки = 1,05. Внешний делительный диаметр колеса из расчёта на контактную выносливость:
Принимаем = 290 мм по ГОСТ 6636. Принимаем (рекомендуется ).Число зубьев колеса Внешний окружной модуль
Углы при вершинах делительных конусов шестерни и колеса:
;
Внешний делительный диаметр шестерни:
Внешнее конусное расстояние:
Ширина венцов b = KbeRe = 0,285·152,09 = 43,3 мм. Принимаем по ГОСТ 6636.
Среднее конусное расстояние:
Средний модуль:
Средние делительные диаметры:
Диаметры вершин:
Диаметры впадин:
Углы головок и ножек для формы 1:
Углы конусов вершин и впадин:
Окружная скорость колёс u =pdm1n1/60000 = π·78,25·480/60000 = 1,97 м/с.
Уточняем коэффициенты нагрузки для 8-й степени точности: = 1,24; = 1,05. Коэффициент = 0,85. Рабочее контактное напряжение:
Вывод. Контактная прочность достаточна.
Окружное усилие в зацеплении:
Радиальное усилие Fr1 = Fa2 = Ft·tga·cos= 846·tg20º·cos17,56º = 276 Н.
Осевое усилие Fa1 = Fr2 = Ft·tga·sin = 846·tg20 º·sin 17,56º = 93 Н.
Уважаемый посетитель!
Чтобы распечатать файл, скачайте его (в формате Word).
Ссылка на скачивание - внизу страницы.